1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | Redistribution and use in source and binary forms, with or without
|
---|
11 | modification, are permitted provided that the following conditions are
|
---|
12 | met:
|
---|
13 |
|
---|
14 | - Redistributions of source code must retain the above copyright
|
---|
15 | notice, this list of conditions and the following disclaimer.
|
---|
16 |
|
---|
17 | - Redistributions in binary form must reproduce the above copyright
|
---|
18 | notice, this list of conditions and the following disclaimer listed
|
---|
19 | in this license in the documentation and/or other materials
|
---|
20 | provided with the distribution.
|
---|
21 |
|
---|
22 | - Neither the name of the copyright holders nor the names of its
|
---|
23 | contributors may be used to endorse or promote products derived from
|
---|
24 | this software without specific prior written permission.
|
---|
25 |
|
---|
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
27 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
28 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
29 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
30 | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
31 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
32 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
33 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
34 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
35 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
36 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
37 | *************************************************************************/
|
---|
38 |
|
---|
39 | using System;
|
---|
40 |
|
---|
41 | class reflections
|
---|
42 | {
|
---|
43 | /*************************************************************************
|
---|
44 | Generation of an elementary reflection transformation
|
---|
45 |
|
---|
46 | The subroutine generates elementary reflection H of order N, so that, for
|
---|
47 | a given X, the following equality holds true:
|
---|
48 |
|
---|
49 | ( X(1) ) ( Beta )
|
---|
50 | H * ( .. ) = ( 0 )
|
---|
51 | ( X(n) ) ( 0 )
|
---|
52 |
|
---|
53 | where
|
---|
54 | ( V(1) )
|
---|
55 | H = 1 - Tau * ( .. ) * ( V(1), ..., V(n) )
|
---|
56 | ( V(n) )
|
---|
57 |
|
---|
58 | where the first component of vector V equals 1.
|
---|
59 |
|
---|
60 | Input parameters:
|
---|
61 | X - vector. Array whose index ranges within [1..N].
|
---|
62 | N - reflection order.
|
---|
63 |
|
---|
64 | Output parameters:
|
---|
65 | X - components from 2 to N are replaced with vector V.
|
---|
66 | The first component is replaced with parameter Beta.
|
---|
67 | Tau - scalar value Tau. If X is a null vector, Tau equals 0,
|
---|
68 | otherwise 1 <= Tau <= 2.
|
---|
69 |
|
---|
70 | This subroutine is the modification of the DLARFG subroutines from
|
---|
71 | the LAPACK library. It has a similar functionality except for the
|
---|
72 | fact that it doesnt handle errors when the intermediate results
|
---|
73 | cause an overflow.
|
---|
74 |
|
---|
75 |
|
---|
76 | MODIFICATIONS:
|
---|
77 | 24.12.2005 sign(Alpha) was replaced with an analogous to the Fortran SIGN code.
|
---|
78 |
|
---|
79 | -- LAPACK auxiliary routine (version 3.0) --
|
---|
80 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
81 | Courant Institute, Argonne National Lab, and Rice University
|
---|
82 | September 30, 1994
|
---|
83 | *************************************************************************/
|
---|
84 | public static void generatereflection(ref double[] x,
|
---|
85 | int n,
|
---|
86 | ref double tau)
|
---|
87 | {
|
---|
88 | int j = 0;
|
---|
89 | double alpha = 0;
|
---|
90 | double xnorm = 0;
|
---|
91 | double v = 0;
|
---|
92 | double beta = 0;
|
---|
93 | double mx = 0;
|
---|
94 | int i_ = 0;
|
---|
95 |
|
---|
96 |
|
---|
97 | //
|
---|
98 | // Executable Statements ..
|
---|
99 | //
|
---|
100 | if( n<=1 )
|
---|
101 | {
|
---|
102 | tau = 0;
|
---|
103 | return;
|
---|
104 | }
|
---|
105 |
|
---|
106 | //
|
---|
107 | // XNORM = DNRM2( N-1, X, INCX )
|
---|
108 | //
|
---|
109 | alpha = x[1];
|
---|
110 | mx = 0;
|
---|
111 | for(j=2; j<=n; j++)
|
---|
112 | {
|
---|
113 | mx = Math.Max(Math.Abs(x[j]), mx);
|
---|
114 | }
|
---|
115 | xnorm = 0;
|
---|
116 | if( mx!=0 )
|
---|
117 | {
|
---|
118 | for(j=2; j<=n; j++)
|
---|
119 | {
|
---|
120 | xnorm = xnorm+AP.Math.Sqr(x[j]/mx);
|
---|
121 | }
|
---|
122 | xnorm = Math.Sqrt(xnorm)*mx;
|
---|
123 | }
|
---|
124 | if( xnorm==0 )
|
---|
125 | {
|
---|
126 |
|
---|
127 | //
|
---|
128 | // H = I
|
---|
129 | //
|
---|
130 | tau = 0;
|
---|
131 | return;
|
---|
132 | }
|
---|
133 |
|
---|
134 | //
|
---|
135 | // general case
|
---|
136 | //
|
---|
137 | mx = Math.Max(Math.Abs(alpha), Math.Abs(xnorm));
|
---|
138 | beta = -(mx*Math.Sqrt(AP.Math.Sqr(alpha/mx)+AP.Math.Sqr(xnorm/mx)));
|
---|
139 | if( alpha<0 )
|
---|
140 | {
|
---|
141 | beta = -beta;
|
---|
142 | }
|
---|
143 | tau = (beta-alpha)/beta;
|
---|
144 | v = 1/(alpha-beta);
|
---|
145 | for(i_=2; i_<=n;i_++)
|
---|
146 | {
|
---|
147 | x[i_] = v*x[i_];
|
---|
148 | }
|
---|
149 | x[1] = beta;
|
---|
150 | }
|
---|
151 |
|
---|
152 |
|
---|
153 | /*************************************************************************
|
---|
154 | Application of an elementary reflection to a rectangular matrix of size MxN
|
---|
155 |
|
---|
156 | The algorithm pre-multiplies the matrix by an elementary reflection transformation
|
---|
157 | which is given by column V and scalar Tau (see the description of the
|
---|
158 | GenerateReflection procedure). Not the whole matrix but only a part of it
|
---|
159 | is transformed (rows from M1 to M2, columns from N1 to N2). Only the elements
|
---|
160 | of this submatrix are changed.
|
---|
161 |
|
---|
162 | Input parameters:
|
---|
163 | C - matrix to be transformed.
|
---|
164 | Tau - scalar defining the transformation.
|
---|
165 | V - column defining the transformation.
|
---|
166 | Array whose index ranges within [1..M2-M1+1].
|
---|
167 | M1, M2 - range of rows to be transformed.
|
---|
168 | N1, N2 - range of columns to be transformed.
|
---|
169 | WORK - working array whose indexes goes from N1 to N2.
|
---|
170 |
|
---|
171 | Output parameters:
|
---|
172 | C - the result of multiplying the input matrix C by the
|
---|
173 | transformation matrix which is given by Tau and V.
|
---|
174 | If N1>N2 or M1>M2, C is not modified.
|
---|
175 |
|
---|
176 | -- LAPACK auxiliary routine (version 3.0) --
|
---|
177 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
178 | Courant Institute, Argonne National Lab, and Rice University
|
---|
179 | September 30, 1994
|
---|
180 | *************************************************************************/
|
---|
181 | public static void applyreflectionfromtheleft(ref double[,] c,
|
---|
182 | double tau,
|
---|
183 | ref double[] v,
|
---|
184 | int m1,
|
---|
185 | int m2,
|
---|
186 | int n1,
|
---|
187 | int n2,
|
---|
188 | ref double[] work)
|
---|
189 | {
|
---|
190 | double t = 0;
|
---|
191 | int i = 0;
|
---|
192 | int vm = 0;
|
---|
193 | int i_ = 0;
|
---|
194 |
|
---|
195 | if( tau==0 | n1>n2 | m1>m2 )
|
---|
196 | {
|
---|
197 | return;
|
---|
198 | }
|
---|
199 |
|
---|
200 | //
|
---|
201 | // w := C' * v
|
---|
202 | //
|
---|
203 | vm = m2-m1+1;
|
---|
204 | for(i=n1; i<=n2; i++)
|
---|
205 | {
|
---|
206 | work[i] = 0;
|
---|
207 | }
|
---|
208 | for(i=m1; i<=m2; i++)
|
---|
209 | {
|
---|
210 | t = v[i+1-m1];
|
---|
211 | for(i_=n1; i_<=n2;i_++)
|
---|
212 | {
|
---|
213 | work[i_] = work[i_] + t*c[i,i_];
|
---|
214 | }
|
---|
215 | }
|
---|
216 |
|
---|
217 | //
|
---|
218 | // C := C - tau * v * w'
|
---|
219 | //
|
---|
220 | for(i=m1; i<=m2; i++)
|
---|
221 | {
|
---|
222 | t = v[i-m1+1]*tau;
|
---|
223 | for(i_=n1; i_<=n2;i_++)
|
---|
224 | {
|
---|
225 | c[i,i_] = c[i,i_] - t*work[i_];
|
---|
226 | }
|
---|
227 | }
|
---|
228 | }
|
---|
229 |
|
---|
230 |
|
---|
231 | /*************************************************************************
|
---|
232 | Application of an elementary reflection to a rectangular matrix of size MxN
|
---|
233 |
|
---|
234 | The algorithm post-multiplies the matrix by an elementary reflection transformation
|
---|
235 | which is given by column V and scalar Tau (see the description of the
|
---|
236 | GenerateReflection procedure). Not the whole matrix but only a part of it
|
---|
237 | is transformed (rows from M1 to M2, columns from N1 to N2). Only the
|
---|
238 | elements of this submatrix are changed.
|
---|
239 |
|
---|
240 | Input parameters:
|
---|
241 | C - matrix to be transformed.
|
---|
242 | Tau - scalar defining the transformation.
|
---|
243 | V - column defining the transformation.
|
---|
244 | Array whose index ranges within [1..N2-N1+1].
|
---|
245 | M1, M2 - range of rows to be transformed.
|
---|
246 | N1, N2 - range of columns to be transformed.
|
---|
247 | WORK - working array whose indexes goes from M1 to M2.
|
---|
248 |
|
---|
249 | Output parameters:
|
---|
250 | C - the result of multiplying the input matrix C by the
|
---|
251 | transformation matrix which is given by Tau and V.
|
---|
252 | If N1>N2 or M1>M2, C is not modified.
|
---|
253 |
|
---|
254 | -- LAPACK auxiliary routine (version 3.0) --
|
---|
255 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
256 | Courant Institute, Argonne National Lab, and Rice University
|
---|
257 | September 30, 1994
|
---|
258 | *************************************************************************/
|
---|
259 | public static void applyreflectionfromtheright(ref double[,] c,
|
---|
260 | double tau,
|
---|
261 | ref double[] v,
|
---|
262 | int m1,
|
---|
263 | int m2,
|
---|
264 | int n1,
|
---|
265 | int n2,
|
---|
266 | ref double[] work)
|
---|
267 | {
|
---|
268 | double t = 0;
|
---|
269 | int i = 0;
|
---|
270 | int vm = 0;
|
---|
271 | int i_ = 0;
|
---|
272 | int i1_ = 0;
|
---|
273 |
|
---|
274 | if( tau==0 | n1>n2 | m1>m2 )
|
---|
275 | {
|
---|
276 | return;
|
---|
277 | }
|
---|
278 |
|
---|
279 | //
|
---|
280 | // w := C * v
|
---|
281 | //
|
---|
282 | vm = n2-n1+1;
|
---|
283 | for(i=m1; i<=m2; i++)
|
---|
284 | {
|
---|
285 | i1_ = (1)-(n1);
|
---|
286 | t = 0.0;
|
---|
287 | for(i_=n1; i_<=n2;i_++)
|
---|
288 | {
|
---|
289 | t += c[i,i_]*v[i_+i1_];
|
---|
290 | }
|
---|
291 | work[i] = t;
|
---|
292 | }
|
---|
293 |
|
---|
294 | //
|
---|
295 | // C := C - w * v'
|
---|
296 | //
|
---|
297 | for(i=m1; i<=m2; i++)
|
---|
298 | {
|
---|
299 | t = work[i]*tau;
|
---|
300 | i1_ = (1) - (n1);
|
---|
301 | for(i_=n1; i_<=n2;i_++)
|
---|
302 | {
|
---|
303 | c[i,i_] = c[i,i_] - t*v[i_+i1_];
|
---|
304 | }
|
---|
305 | }
|
---|
306 | }
|
---|
307 |
|
---|
308 |
|
---|
309 | private static void testreflections()
|
---|
310 | {
|
---|
311 | int i = 0;
|
---|
312 | int j = 0;
|
---|
313 | int n = 0;
|
---|
314 | int m = 0;
|
---|
315 | int maxmn = 0;
|
---|
316 | double[] x = new double[0];
|
---|
317 | double[] v = new double[0];
|
---|
318 | double[] work = new double[0];
|
---|
319 | double[,] h = new double[0,0];
|
---|
320 | double[,] a = new double[0,0];
|
---|
321 | double[,] b = new double[0,0];
|
---|
322 | double[,] c = new double[0,0];
|
---|
323 | double tmp = 0;
|
---|
324 | double beta = 0;
|
---|
325 | double tau = 0;
|
---|
326 | double err = 0;
|
---|
327 | double mer = 0;
|
---|
328 | double mel = 0;
|
---|
329 | double meg = 0;
|
---|
330 | int pass = 0;
|
---|
331 | int passcount = 0;
|
---|
332 | int i_ = 0;
|
---|
333 |
|
---|
334 | passcount = 1000;
|
---|
335 | mer = 0;
|
---|
336 | mel = 0;
|
---|
337 | meg = 0;
|
---|
338 | for(pass=1; pass<=passcount; pass++)
|
---|
339 | {
|
---|
340 |
|
---|
341 | //
|
---|
342 | // Task
|
---|
343 | //
|
---|
344 | n = 1+AP.Math.RandomInteger(10);
|
---|
345 | m = 1+AP.Math.RandomInteger(10);
|
---|
346 | maxmn = Math.Max(m, n);
|
---|
347 |
|
---|
348 | //
|
---|
349 | // Initialize
|
---|
350 | //
|
---|
351 | x = new double[maxmn+1];
|
---|
352 | v = new double[maxmn+1];
|
---|
353 | work = new double[maxmn+1];
|
---|
354 | h = new double[maxmn+1, maxmn+1];
|
---|
355 | a = new double[maxmn+1, maxmn+1];
|
---|
356 | b = new double[maxmn+1, maxmn+1];
|
---|
357 | c = new double[maxmn+1, maxmn+1];
|
---|
358 |
|
---|
359 | //
|
---|
360 | // GenerateReflection
|
---|
361 | //
|
---|
362 | for(i=1; i<=n; i++)
|
---|
363 | {
|
---|
364 | x[i] = 2*AP.Math.RandomReal()-1;
|
---|
365 | v[i] = x[i];
|
---|
366 | }
|
---|
367 | generatereflection(ref v, n, ref tau);
|
---|
368 | beta = v[1];
|
---|
369 | v[1] = 1;
|
---|
370 | for(i=1; i<=n; i++)
|
---|
371 | {
|
---|
372 | for(j=1; j<=n; j++)
|
---|
373 | {
|
---|
374 | if( i==j )
|
---|
375 | {
|
---|
376 | h[i,j] = 1-tau*v[i]*v[j];
|
---|
377 | }
|
---|
378 | else
|
---|
379 | {
|
---|
380 | h[i,j] = -(tau*v[i]*v[j]);
|
---|
381 | }
|
---|
382 | }
|
---|
383 | }
|
---|
384 | err = 0;
|
---|
385 | for(i=1; i<=n; i++)
|
---|
386 | {
|
---|
387 | tmp = 0.0;
|
---|
388 | for(i_=1; i_<=n;i_++)
|
---|
389 | {
|
---|
390 | tmp += h[i,i_]*x[i_];
|
---|
391 | }
|
---|
392 | if( i==1 )
|
---|
393 | {
|
---|
394 | err = Math.Max(err, Math.Abs(tmp-beta));
|
---|
395 | }
|
---|
396 | else
|
---|
397 | {
|
---|
398 | err = Math.Max(err, Math.Abs(tmp));
|
---|
399 | }
|
---|
400 | }
|
---|
401 | meg = Math.Max(meg, err);
|
---|
402 |
|
---|
403 | //
|
---|
404 | // ApplyReflectionFromTheLeft
|
---|
405 | //
|
---|
406 | for(i=1; i<=m; i++)
|
---|
407 | {
|
---|
408 | x[i] = 2*AP.Math.RandomReal()-1;
|
---|
409 | v[i] = x[i];
|
---|
410 | }
|
---|
411 | for(i=1; i<=m; i++)
|
---|
412 | {
|
---|
413 | for(j=1; j<=n; j++)
|
---|
414 | {
|
---|
415 | a[i,j] = 2*AP.Math.RandomReal()-1;
|
---|
416 | b[i,j] = a[i,j];
|
---|
417 | }
|
---|
418 | }
|
---|
419 | generatereflection(ref v, m, ref tau);
|
---|
420 | beta = v[1];
|
---|
421 | v[1] = 1;
|
---|
422 | applyreflectionfromtheleft(ref b, tau, ref v, 1, m, 1, n, ref work);
|
---|
423 | for(i=1; i<=m; i++)
|
---|
424 | {
|
---|
425 | for(j=1; j<=m; j++)
|
---|
426 | {
|
---|
427 | if( i==j )
|
---|
428 | {
|
---|
429 | h[i,j] = 1-tau*v[i]*v[j];
|
---|
430 | }
|
---|
431 | else
|
---|
432 | {
|
---|
433 | h[i,j] = -(tau*v[i]*v[j]);
|
---|
434 | }
|
---|
435 | }
|
---|
436 | }
|
---|
437 | for(i=1; i<=m; i++)
|
---|
438 | {
|
---|
439 | for(j=1; j<=n; j++)
|
---|
440 | {
|
---|
441 | tmp = 0.0;
|
---|
442 | for(i_=1; i_<=m;i_++)
|
---|
443 | {
|
---|
444 | tmp += h[i,i_]*a[i_,j];
|
---|
445 | }
|
---|
446 | c[i,j] = tmp;
|
---|
447 | }
|
---|
448 | }
|
---|
449 | err = 0;
|
---|
450 | for(i=1; i<=m; i++)
|
---|
451 | {
|
---|
452 | for(j=1; j<=n; j++)
|
---|
453 | {
|
---|
454 | err = Math.Max(err, Math.Abs(b[i,j]-c[i,j]));
|
---|
455 | }
|
---|
456 | }
|
---|
457 | mel = Math.Max(mel, err);
|
---|
458 |
|
---|
459 | //
|
---|
460 | // ApplyReflectionFromTheRight
|
---|
461 | //
|
---|
462 | for(i=1; i<=n; i++)
|
---|
463 | {
|
---|
464 | x[i] = 2*AP.Math.RandomReal()-1;
|
---|
465 | v[i] = x[i];
|
---|
466 | }
|
---|
467 | for(i=1; i<=m; i++)
|
---|
468 | {
|
---|
469 | for(j=1; j<=n; j++)
|
---|
470 | {
|
---|
471 | a[i,j] = 2*AP.Math.RandomReal()-1;
|
---|
472 | b[i,j] = a[i,j];
|
---|
473 | }
|
---|
474 | }
|
---|
475 | generatereflection(ref v, n, ref tau);
|
---|
476 | beta = v[1];
|
---|
477 | v[1] = 1;
|
---|
478 | applyreflectionfromtheright(ref b, tau, ref v, 1, m, 1, n, ref work);
|
---|
479 | for(i=1; i<=n; i++)
|
---|
480 | {
|
---|
481 | for(j=1; j<=n; j++)
|
---|
482 | {
|
---|
483 | if( i==j )
|
---|
484 | {
|
---|
485 | h[i,j] = 1-tau*v[i]*v[j];
|
---|
486 | }
|
---|
487 | else
|
---|
488 | {
|
---|
489 | h[i,j] = -(tau*v[i]*v[j]);
|
---|
490 | }
|
---|
491 | }
|
---|
492 | }
|
---|
493 | for(i=1; i<=m; i++)
|
---|
494 | {
|
---|
495 | for(j=1; j<=n; j++)
|
---|
496 | {
|
---|
497 | tmp = 0.0;
|
---|
498 | for(i_=1; i_<=n;i_++)
|
---|
499 | {
|
---|
500 | tmp += a[i,i_]*h[i_,j];
|
---|
501 | }
|
---|
502 | c[i,j] = tmp;
|
---|
503 | }
|
---|
504 | }
|
---|
505 | err = 0;
|
---|
506 | for(i=1; i<=m; i++)
|
---|
507 | {
|
---|
508 | for(j=1; j<=n; j++)
|
---|
509 | {
|
---|
510 | err = Math.Max(err, Math.Abs(b[i,j]-c[i,j]));
|
---|
511 | }
|
---|
512 | }
|
---|
513 | mer = Math.Max(mer, err);
|
---|
514 | }
|
---|
515 |
|
---|
516 | //
|
---|
517 | // Overflow crash test
|
---|
518 | //
|
---|
519 | x = new double[10+1];
|
---|
520 | v = new double[10+1];
|
---|
521 | for(i=1; i<=10; i++)
|
---|
522 | {
|
---|
523 | v[i] = AP.Math.MaxRealNumber*0.01*(2*AP.Math.RandomReal()-1);
|
---|
524 | }
|
---|
525 | generatereflection(ref v, 10, ref tau);
|
---|
526 | System.Console.Write("TESTING REFLECTIONS");
|
---|
527 | System.Console.WriteLine();
|
---|
528 | System.Console.Write("Pass count is ");
|
---|
529 | System.Console.Write("{0,0:d}",passcount);
|
---|
530 | System.Console.WriteLine();
|
---|
531 | System.Console.Write("Generate absolute error is ");
|
---|
532 | System.Console.Write("{0,5:E3}",meg);
|
---|
533 | System.Console.WriteLine();
|
---|
534 | System.Console.Write("Apply(Left) absolute error is ");
|
---|
535 | System.Console.Write("{0,5:E3}",mel);
|
---|
536 | System.Console.WriteLine();
|
---|
537 | System.Console.Write("Apply(Right) absolute error is ");
|
---|
538 | System.Console.Write("{0,5:E3}",mer);
|
---|
539 | System.Console.WriteLine();
|
---|
540 | System.Console.Write("Overflow crash test passed");
|
---|
541 | System.Console.WriteLine();
|
---|
542 | }
|
---|
543 | }
|
---|