[2154] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
| 3 |
|
---|
| 4 | Contributors:
|
---|
| 5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
| 6 | pseudocode.
|
---|
| 7 |
|
---|
| 8 | See subroutines comments for additional copyrights.
|
---|
| 9 |
|
---|
| 10 | Redistribution and use in source and binary forms, with or without
|
---|
| 11 | modification, are permitted provided that the following conditions are
|
---|
| 12 | met:
|
---|
| 13 |
|
---|
| 14 | - Redistributions of source code must retain the above copyright
|
---|
| 15 | notice, this list of conditions and the following disclaimer.
|
---|
| 16 |
|
---|
| 17 | - Redistributions in binary form must reproduce the above copyright
|
---|
| 18 | notice, this list of conditions and the following disclaimer listed
|
---|
| 19 | in this license in the documentation and/or other materials
|
---|
| 20 | provided with the distribution.
|
---|
| 21 |
|
---|
| 22 | - Neither the name of the copyright holders nor the names of its
|
---|
| 23 | contributors may be used to endorse or promote products derived from
|
---|
| 24 | this software without specific prior written permission.
|
---|
| 25 |
|
---|
| 26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
| 27 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
| 28 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
| 29 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
| 30 | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
| 31 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
| 32 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 33 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 34 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 35 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
| 36 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 37 | *************************************************************************/
|
---|
| 38 |
|
---|
| 39 | using System;
|
---|
| 40 |
|
---|
| 41 | class reflections
|
---|
| 42 | {
|
---|
| 43 | /*************************************************************************
|
---|
| 44 | Generation of an elementary reflection transformation
|
---|
| 45 |
|
---|
| 46 | The subroutine generates elementary reflection H of order N, so that, for
|
---|
| 47 | a given X, the following equality holds true:
|
---|
| 48 |
|
---|
| 49 | ( X(1) ) ( Beta )
|
---|
| 50 | H * ( .. ) = ( 0 )
|
---|
| 51 | ( X(n) ) ( 0 )
|
---|
| 52 |
|
---|
| 53 | where
|
---|
| 54 | ( V(1) )
|
---|
| 55 | H = 1 - Tau * ( .. ) * ( V(1), ..., V(n) )
|
---|
| 56 | ( V(n) )
|
---|
| 57 |
|
---|
| 58 | where the first component of vector V equals 1.
|
---|
| 59 |
|
---|
| 60 | Input parameters:
|
---|
| 61 | X - vector. Array whose index ranges within [1..N].
|
---|
| 62 | N - reflection order.
|
---|
| 63 |
|
---|
| 64 | Output parameters:
|
---|
| 65 | X - components from 2 to N are replaced with vector V.
|
---|
| 66 | The first component is replaced with parameter Beta.
|
---|
| 67 | Tau - scalar value Tau. If X is a null vector, Tau equals 0,
|
---|
| 68 | otherwise 1 <= Tau <= 2.
|
---|
| 69 |
|
---|
| 70 | This subroutine is the modification of the DLARFG subroutines from
|
---|
| 71 | the LAPACK library. It has a similar functionality except for the
|
---|
| 72 | fact that it doesnt handle errors when the intermediate results
|
---|
| 73 | cause an overflow.
|
---|
| 74 |
|
---|
| 75 |
|
---|
| 76 | MODIFICATIONS:
|
---|
| 77 | 24.12.2005 sign(Alpha) was replaced with an analogous to the Fortran SIGN code.
|
---|
| 78 |
|
---|
| 79 | -- LAPACK auxiliary routine (version 3.0) --
|
---|
| 80 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
| 81 | Courant Institute, Argonne National Lab, and Rice University
|
---|
| 82 | September 30, 1994
|
---|
| 83 | *************************************************************************/
|
---|
| 84 | public static void generatereflection(ref double[] x,
|
---|
| 85 | int n,
|
---|
| 86 | ref double tau)
|
---|
| 87 | {
|
---|
| 88 | int j = 0;
|
---|
| 89 | double alpha = 0;
|
---|
| 90 | double xnorm = 0;
|
---|
| 91 | double v = 0;
|
---|
| 92 | double beta = 0;
|
---|
| 93 | double mx = 0;
|
---|
| 94 | int i_ = 0;
|
---|
| 95 |
|
---|
| 96 |
|
---|
| 97 | //
|
---|
| 98 | // Executable Statements ..
|
---|
| 99 | //
|
---|
| 100 | if( n<=1 )
|
---|
| 101 | {
|
---|
| 102 | tau = 0;
|
---|
| 103 | return;
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | //
|
---|
| 107 | // XNORM = DNRM2( N-1, X, INCX )
|
---|
| 108 | //
|
---|
| 109 | alpha = x[1];
|
---|
| 110 | mx = 0;
|
---|
| 111 | for(j=2; j<=n; j++)
|
---|
| 112 | {
|
---|
| 113 | mx = Math.Max(Math.Abs(x[j]), mx);
|
---|
| 114 | }
|
---|
| 115 | xnorm = 0;
|
---|
| 116 | if( mx!=0 )
|
---|
| 117 | {
|
---|
| 118 | for(j=2; j<=n; j++)
|
---|
| 119 | {
|
---|
| 120 | xnorm = xnorm+AP.Math.Sqr(x[j]/mx);
|
---|
| 121 | }
|
---|
| 122 | xnorm = Math.Sqrt(xnorm)*mx;
|
---|
| 123 | }
|
---|
| 124 | if( xnorm==0 )
|
---|
| 125 | {
|
---|
| 126 |
|
---|
| 127 | //
|
---|
| 128 | // H = I
|
---|
| 129 | //
|
---|
| 130 | tau = 0;
|
---|
| 131 | return;
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | //
|
---|
| 135 | // general case
|
---|
| 136 | //
|
---|
| 137 | mx = Math.Max(Math.Abs(alpha), Math.Abs(xnorm));
|
---|
| 138 | beta = -(mx*Math.Sqrt(AP.Math.Sqr(alpha/mx)+AP.Math.Sqr(xnorm/mx)));
|
---|
| 139 | if( alpha<0 )
|
---|
| 140 | {
|
---|
| 141 | beta = -beta;
|
---|
| 142 | }
|
---|
| 143 | tau = (beta-alpha)/beta;
|
---|
| 144 | v = 1/(alpha-beta);
|
---|
| 145 | for(i_=2; i_<=n;i_++)
|
---|
| 146 | {
|
---|
| 147 | x[i_] = v*x[i_];
|
---|
| 148 | }
|
---|
| 149 | x[1] = beta;
|
---|
| 150 | }
|
---|
| 151 |
|
---|
| 152 |
|
---|
| 153 | /*************************************************************************
|
---|
| 154 | Application of an elementary reflection to a rectangular matrix of size MxN
|
---|
| 155 |
|
---|
| 156 | The algorithm pre-multiplies the matrix by an elementary reflection transformation
|
---|
| 157 | which is given by column V and scalar Tau (see the description of the
|
---|
| 158 | GenerateReflection procedure). Not the whole matrix but only a part of it
|
---|
| 159 | is transformed (rows from M1 to M2, columns from N1 to N2). Only the elements
|
---|
| 160 | of this submatrix are changed.
|
---|
| 161 |
|
---|
| 162 | Input parameters:
|
---|
| 163 | C - matrix to be transformed.
|
---|
| 164 | Tau - scalar defining the transformation.
|
---|
| 165 | V - column defining the transformation.
|
---|
| 166 | Array whose index ranges within [1..M2-M1+1].
|
---|
| 167 | M1, M2 - range of rows to be transformed.
|
---|
| 168 | N1, N2 - range of columns to be transformed.
|
---|
| 169 | WORK - working array whose indexes goes from N1 to N2.
|
---|
| 170 |
|
---|
| 171 | Output parameters:
|
---|
| 172 | C - the result of multiplying the input matrix C by the
|
---|
| 173 | transformation matrix which is given by Tau and V.
|
---|
| 174 | If N1>N2 or M1>M2, C is not modified.
|
---|
| 175 |
|
---|
| 176 | -- LAPACK auxiliary routine (version 3.0) --
|
---|
| 177 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
| 178 | Courant Institute, Argonne National Lab, and Rice University
|
---|
| 179 | September 30, 1994
|
---|
| 180 | *************************************************************************/
|
---|
| 181 | public static void applyreflectionfromtheleft(ref double[,] c,
|
---|
| 182 | double tau,
|
---|
| 183 | ref double[] v,
|
---|
| 184 | int m1,
|
---|
| 185 | int m2,
|
---|
| 186 | int n1,
|
---|
| 187 | int n2,
|
---|
| 188 | ref double[] work)
|
---|
| 189 | {
|
---|
| 190 | double t = 0;
|
---|
| 191 | int i = 0;
|
---|
| 192 | int vm = 0;
|
---|
| 193 | int i_ = 0;
|
---|
| 194 |
|
---|
| 195 | if( tau==0 | n1>n2 | m1>m2 )
|
---|
| 196 | {
|
---|
| 197 | return;
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | //
|
---|
| 201 | // w := C' * v
|
---|
| 202 | //
|
---|
| 203 | vm = m2-m1+1;
|
---|
| 204 | for(i=n1; i<=n2; i++)
|
---|
| 205 | {
|
---|
| 206 | work[i] = 0;
|
---|
| 207 | }
|
---|
| 208 | for(i=m1; i<=m2; i++)
|
---|
| 209 | {
|
---|
| 210 | t = v[i+1-m1];
|
---|
| 211 | for(i_=n1; i_<=n2;i_++)
|
---|
| 212 | {
|
---|
| 213 | work[i_] = work[i_] + t*c[i,i_];
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 |
|
---|
| 217 | //
|
---|
| 218 | // C := C - tau * v * w'
|
---|
| 219 | //
|
---|
| 220 | for(i=m1; i<=m2; i++)
|
---|
| 221 | {
|
---|
| 222 | t = v[i-m1+1]*tau;
|
---|
| 223 | for(i_=n1; i_<=n2;i_++)
|
---|
| 224 | {
|
---|
| 225 | c[i,i_] = c[i,i_] - t*work[i_];
|
---|
| 226 | }
|
---|
| 227 | }
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 |
|
---|
| 231 | /*************************************************************************
|
---|
| 232 | Application of an elementary reflection to a rectangular matrix of size MxN
|
---|
| 233 |
|
---|
| 234 | The algorithm post-multiplies the matrix by an elementary reflection transformation
|
---|
| 235 | which is given by column V and scalar Tau (see the description of the
|
---|
| 236 | GenerateReflection procedure). Not the whole matrix but only a part of it
|
---|
| 237 | is transformed (rows from M1 to M2, columns from N1 to N2). Only the
|
---|
| 238 | elements of this submatrix are changed.
|
---|
| 239 |
|
---|
| 240 | Input parameters:
|
---|
| 241 | C - matrix to be transformed.
|
---|
| 242 | Tau - scalar defining the transformation.
|
---|
| 243 | V - column defining the transformation.
|
---|
| 244 | Array whose index ranges within [1..N2-N1+1].
|
---|
| 245 | M1, M2 - range of rows to be transformed.
|
---|
| 246 | N1, N2 - range of columns to be transformed.
|
---|
| 247 | WORK - working array whose indexes goes from M1 to M2.
|
---|
| 248 |
|
---|
| 249 | Output parameters:
|
---|
| 250 | C - the result of multiplying the input matrix C by the
|
---|
| 251 | transformation matrix which is given by Tau and V.
|
---|
| 252 | If N1>N2 or M1>M2, C is not modified.
|
---|
| 253 |
|
---|
| 254 | -- LAPACK auxiliary routine (version 3.0) --
|
---|
| 255 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
| 256 | Courant Institute, Argonne National Lab, and Rice University
|
---|
| 257 | September 30, 1994
|
---|
| 258 | *************************************************************************/
|
---|
| 259 | public static void applyreflectionfromtheright(ref double[,] c,
|
---|
| 260 | double tau,
|
---|
| 261 | ref double[] v,
|
---|
| 262 | int m1,
|
---|
| 263 | int m2,
|
---|
| 264 | int n1,
|
---|
| 265 | int n2,
|
---|
| 266 | ref double[] work)
|
---|
| 267 | {
|
---|
| 268 | double t = 0;
|
---|
| 269 | int i = 0;
|
---|
| 270 | int vm = 0;
|
---|
| 271 | int i_ = 0;
|
---|
| 272 | int i1_ = 0;
|
---|
| 273 |
|
---|
| 274 | if( tau==0 | n1>n2 | m1>m2 )
|
---|
| 275 | {
|
---|
| 276 | return;
|
---|
| 277 | }
|
---|
| 278 |
|
---|
| 279 | //
|
---|
| 280 | // w := C * v
|
---|
| 281 | //
|
---|
| 282 | vm = n2-n1+1;
|
---|
| 283 | for(i=m1; i<=m2; i++)
|
---|
| 284 | {
|
---|
| 285 | i1_ = (1)-(n1);
|
---|
| 286 | t = 0.0;
|
---|
| 287 | for(i_=n1; i_<=n2;i_++)
|
---|
| 288 | {
|
---|
| 289 | t += c[i,i_]*v[i_+i1_];
|
---|
| 290 | }
|
---|
| 291 | work[i] = t;
|
---|
| 292 | }
|
---|
| 293 |
|
---|
| 294 | //
|
---|
| 295 | // C := C - w * v'
|
---|
| 296 | //
|
---|
| 297 | for(i=m1; i<=m2; i++)
|
---|
| 298 | {
|
---|
| 299 | t = work[i]*tau;
|
---|
| 300 | i1_ = (1) - (n1);
|
---|
| 301 | for(i_=n1; i_<=n2;i_++)
|
---|
| 302 | {
|
---|
| 303 | c[i,i_] = c[i,i_] - t*v[i_+i1_];
|
---|
| 304 | }
|
---|
| 305 | }
|
---|
| 306 | }
|
---|
| 307 |
|
---|
| 308 |
|
---|
| 309 | private static void testreflections()
|
---|
| 310 | {
|
---|
| 311 | int i = 0;
|
---|
| 312 | int j = 0;
|
---|
| 313 | int n = 0;
|
---|
| 314 | int m = 0;
|
---|
| 315 | int maxmn = 0;
|
---|
| 316 | double[] x = new double[0];
|
---|
| 317 | double[] v = new double[0];
|
---|
| 318 | double[] work = new double[0];
|
---|
| 319 | double[,] h = new double[0,0];
|
---|
| 320 | double[,] a = new double[0,0];
|
---|
| 321 | double[,] b = new double[0,0];
|
---|
| 322 | double[,] c = new double[0,0];
|
---|
| 323 | double tmp = 0;
|
---|
| 324 | double beta = 0;
|
---|
| 325 | double tau = 0;
|
---|
| 326 | double err = 0;
|
---|
| 327 | double mer = 0;
|
---|
| 328 | double mel = 0;
|
---|
| 329 | double meg = 0;
|
---|
| 330 | int pass = 0;
|
---|
| 331 | int passcount = 0;
|
---|
| 332 | int i_ = 0;
|
---|
| 333 |
|
---|
| 334 | passcount = 1000;
|
---|
| 335 | mer = 0;
|
---|
| 336 | mel = 0;
|
---|
| 337 | meg = 0;
|
---|
| 338 | for(pass=1; pass<=passcount; pass++)
|
---|
| 339 | {
|
---|
| 340 |
|
---|
| 341 | //
|
---|
| 342 | // Task
|
---|
| 343 | //
|
---|
| 344 | n = 1+AP.Math.RandomInteger(10);
|
---|
| 345 | m = 1+AP.Math.RandomInteger(10);
|
---|
| 346 | maxmn = Math.Max(m, n);
|
---|
| 347 |
|
---|
| 348 | //
|
---|
| 349 | // Initialize
|
---|
| 350 | //
|
---|
| 351 | x = new double[maxmn+1];
|
---|
| 352 | v = new double[maxmn+1];
|
---|
| 353 | work = new double[maxmn+1];
|
---|
| 354 | h = new double[maxmn+1, maxmn+1];
|
---|
| 355 | a = new double[maxmn+1, maxmn+1];
|
---|
| 356 | b = new double[maxmn+1, maxmn+1];
|
---|
| 357 | c = new double[maxmn+1, maxmn+1];
|
---|
| 358 |
|
---|
| 359 | //
|
---|
| 360 | // GenerateReflection
|
---|
| 361 | //
|
---|
| 362 | for(i=1; i<=n; i++)
|
---|
| 363 | {
|
---|
| 364 | x[i] = 2*AP.Math.RandomReal()-1;
|
---|
| 365 | v[i] = x[i];
|
---|
| 366 | }
|
---|
| 367 | generatereflection(ref v, n, ref tau);
|
---|
| 368 | beta = v[1];
|
---|
| 369 | v[1] = 1;
|
---|
| 370 | for(i=1; i<=n; i++)
|
---|
| 371 | {
|
---|
| 372 | for(j=1; j<=n; j++)
|
---|
| 373 | {
|
---|
| 374 | if( i==j )
|
---|
| 375 | {
|
---|
| 376 | h[i,j] = 1-tau*v[i]*v[j];
|
---|
| 377 | }
|
---|
| 378 | else
|
---|
| 379 | {
|
---|
| 380 | h[i,j] = -(tau*v[i]*v[j]);
|
---|
| 381 | }
|
---|
| 382 | }
|
---|
| 383 | }
|
---|
| 384 | err = 0;
|
---|
| 385 | for(i=1; i<=n; i++)
|
---|
| 386 | {
|
---|
| 387 | tmp = 0.0;
|
---|
| 388 | for(i_=1; i_<=n;i_++)
|
---|
| 389 | {
|
---|
| 390 | tmp += h[i,i_]*x[i_];
|
---|
| 391 | }
|
---|
| 392 | if( i==1 )
|
---|
| 393 | {
|
---|
| 394 | err = Math.Max(err, Math.Abs(tmp-beta));
|
---|
| 395 | }
|
---|
| 396 | else
|
---|
| 397 | {
|
---|
| 398 | err = Math.Max(err, Math.Abs(tmp));
|
---|
| 399 | }
|
---|
| 400 | }
|
---|
| 401 | meg = Math.Max(meg, err);
|
---|
| 402 |
|
---|
| 403 | //
|
---|
| 404 | // ApplyReflectionFromTheLeft
|
---|
| 405 | //
|
---|
| 406 | for(i=1; i<=m; i++)
|
---|
| 407 | {
|
---|
| 408 | x[i] = 2*AP.Math.RandomReal()-1;
|
---|
| 409 | v[i] = x[i];
|
---|
| 410 | }
|
---|
| 411 | for(i=1; i<=m; i++)
|
---|
| 412 | {
|
---|
| 413 | for(j=1; j<=n; j++)
|
---|
| 414 | {
|
---|
| 415 | a[i,j] = 2*AP.Math.RandomReal()-1;
|
---|
| 416 | b[i,j] = a[i,j];
|
---|
| 417 | }
|
---|
| 418 | }
|
---|
| 419 | generatereflection(ref v, m, ref tau);
|
---|
| 420 | beta = v[1];
|
---|
| 421 | v[1] = 1;
|
---|
| 422 | applyreflectionfromtheleft(ref b, tau, ref v, 1, m, 1, n, ref work);
|
---|
| 423 | for(i=1; i<=m; i++)
|
---|
| 424 | {
|
---|
| 425 | for(j=1; j<=m; j++)
|
---|
| 426 | {
|
---|
| 427 | if( i==j )
|
---|
| 428 | {
|
---|
| 429 | h[i,j] = 1-tau*v[i]*v[j];
|
---|
| 430 | }
|
---|
| 431 | else
|
---|
| 432 | {
|
---|
| 433 | h[i,j] = -(tau*v[i]*v[j]);
|
---|
| 434 | }
|
---|
| 435 | }
|
---|
| 436 | }
|
---|
| 437 | for(i=1; i<=m; i++)
|
---|
| 438 | {
|
---|
| 439 | for(j=1; j<=n; j++)
|
---|
| 440 | {
|
---|
| 441 | tmp = 0.0;
|
---|
| 442 | for(i_=1; i_<=m;i_++)
|
---|
| 443 | {
|
---|
| 444 | tmp += h[i,i_]*a[i_,j];
|
---|
| 445 | }
|
---|
| 446 | c[i,j] = tmp;
|
---|
| 447 | }
|
---|
| 448 | }
|
---|
| 449 | err = 0;
|
---|
| 450 | for(i=1; i<=m; i++)
|
---|
| 451 | {
|
---|
| 452 | for(j=1; j<=n; j++)
|
---|
| 453 | {
|
---|
| 454 | err = Math.Max(err, Math.Abs(b[i,j]-c[i,j]));
|
---|
| 455 | }
|
---|
| 456 | }
|
---|
| 457 | mel = Math.Max(mel, err);
|
---|
| 458 |
|
---|
| 459 | //
|
---|
| 460 | // ApplyReflectionFromTheRight
|
---|
| 461 | //
|
---|
| 462 | for(i=1; i<=n; i++)
|
---|
| 463 | {
|
---|
| 464 | x[i] = 2*AP.Math.RandomReal()-1;
|
---|
| 465 | v[i] = x[i];
|
---|
| 466 | }
|
---|
| 467 | for(i=1; i<=m; i++)
|
---|
| 468 | {
|
---|
| 469 | for(j=1; j<=n; j++)
|
---|
| 470 | {
|
---|
| 471 | a[i,j] = 2*AP.Math.RandomReal()-1;
|
---|
| 472 | b[i,j] = a[i,j];
|
---|
| 473 | }
|
---|
| 474 | }
|
---|
| 475 | generatereflection(ref v, n, ref tau);
|
---|
| 476 | beta = v[1];
|
---|
| 477 | v[1] = 1;
|
---|
| 478 | applyreflectionfromtheright(ref b, tau, ref v, 1, m, 1, n, ref work);
|
---|
| 479 | for(i=1; i<=n; i++)
|
---|
| 480 | {
|
---|
| 481 | for(j=1; j<=n; j++)
|
---|
| 482 | {
|
---|
| 483 | if( i==j )
|
---|
| 484 | {
|
---|
| 485 | h[i,j] = 1-tau*v[i]*v[j];
|
---|
| 486 | }
|
---|
| 487 | else
|
---|
| 488 | {
|
---|
| 489 | h[i,j] = -(tau*v[i]*v[j]);
|
---|
| 490 | }
|
---|
| 491 | }
|
---|
| 492 | }
|
---|
| 493 | for(i=1; i<=m; i++)
|
---|
| 494 | {
|
---|
| 495 | for(j=1; j<=n; j++)
|
---|
| 496 | {
|
---|
| 497 | tmp = 0.0;
|
---|
| 498 | for(i_=1; i_<=n;i_++)
|
---|
| 499 | {
|
---|
| 500 | tmp += a[i,i_]*h[i_,j];
|
---|
| 501 | }
|
---|
| 502 | c[i,j] = tmp;
|
---|
| 503 | }
|
---|
| 504 | }
|
---|
| 505 | err = 0;
|
---|
| 506 | for(i=1; i<=m; i++)
|
---|
| 507 | {
|
---|
| 508 | for(j=1; j<=n; j++)
|
---|
| 509 | {
|
---|
| 510 | err = Math.Max(err, Math.Abs(b[i,j]-c[i,j]));
|
---|
| 511 | }
|
---|
| 512 | }
|
---|
| 513 | mer = Math.Max(mer, err);
|
---|
| 514 | }
|
---|
| 515 |
|
---|
| 516 | //
|
---|
| 517 | // Overflow crash test
|
---|
| 518 | //
|
---|
| 519 | x = new double[10+1];
|
---|
| 520 | v = new double[10+1];
|
---|
| 521 | for(i=1; i<=10; i++)
|
---|
| 522 | {
|
---|
| 523 | v[i] = AP.Math.MaxRealNumber*0.01*(2*AP.Math.RandomReal()-1);
|
---|
| 524 | }
|
---|
| 525 | generatereflection(ref v, 10, ref tau);
|
---|
| 526 | System.Console.Write("TESTING REFLECTIONS");
|
---|
| 527 | System.Console.WriteLine();
|
---|
| 528 | System.Console.Write("Pass count is ");
|
---|
| 529 | System.Console.Write("{0,0:d}",passcount);
|
---|
| 530 | System.Console.WriteLine();
|
---|
| 531 | System.Console.Write("Generate absolute error is ");
|
---|
| 532 | System.Console.Write("{0,5:E3}",meg);
|
---|
| 533 | System.Console.WriteLine();
|
---|
| 534 | System.Console.Write("Apply(Left) absolute error is ");
|
---|
| 535 | System.Console.Write("{0,5:E3}",mel);
|
---|
| 536 | System.Console.WriteLine();
|
---|
| 537 | System.Console.Write("Apply(Right) absolute error is ");
|
---|
| 538 | System.Console.Write("{0,5:E3}",mer);
|
---|
| 539 | System.Console.WriteLine();
|
---|
| 540 | System.Console.Write("Overflow crash test passed");
|
---|
| 541 | System.Console.WriteLine();
|
---|
| 542 | }
|
---|
| 543 | }
|
---|