1 | /*************************************************************************
|
---|
2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | Redistribution and use in source and binary forms, with or without
|
---|
5 | modification, are permitted provided that the following conditions are
|
---|
6 | met:
|
---|
7 |
|
---|
8 | - Redistributions of source code must retain the above copyright
|
---|
9 | notice, this list of conditions and the following disclaimer.
|
---|
10 |
|
---|
11 | - Redistributions in binary form must reproduce the above copyright
|
---|
12 | notice, this list of conditions and the following disclaimer listed
|
---|
13 | in this license in the documentation and/or other materials
|
---|
14 | provided with the distribution.
|
---|
15 |
|
---|
16 | - Neither the name of the copyright holders nor the names of its
|
---|
17 | contributors may be used to endorse or promote products derived from
|
---|
18 | this software without specific prior written permission.
|
---|
19 |
|
---|
20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
21 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
22 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
23 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
24 | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
25 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
26 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
27 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
28 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
29 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
30 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
31 | *************************************************************************/
|
---|
32 |
|
---|
33 | using System;
|
---|
34 |
|
---|
35 | class lq
|
---|
36 | {
|
---|
37 | /*************************************************************************
|
---|
38 | LQ decomposition of a rectangular matrix of size MxN
|
---|
39 |
|
---|
40 | Input parameters:
|
---|
41 | A - matrix A whose indexes range within [0..M-1, 0..N-1].
|
---|
42 | M - number of rows in matrix A.
|
---|
43 | N - number of columns in matrix A.
|
---|
44 |
|
---|
45 | Output parameters:
|
---|
46 | A - matrices L and Q in compact form (see below)
|
---|
47 | Tau - array of scalar factors which are used to form
|
---|
48 | matrix Q. Array whose index ranges within [0..Min(M,N)-1].
|
---|
49 |
|
---|
50 | Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size
|
---|
51 | MxM, L - lower triangular (or lower trapezoid) matrix of size M x N.
|
---|
52 |
|
---|
53 | The elements of matrix L are located on and below the main diagonal of
|
---|
54 | matrix A. The elements which are located in Tau array and above the main
|
---|
55 | diagonal of matrix A are used to form matrix Q as follows:
|
---|
56 |
|
---|
57 | Matrix Q is represented as a product of elementary reflections
|
---|
58 |
|
---|
59 | Q = H(k-1)*H(k-2)*...*H(1)*H(0),
|
---|
60 |
|
---|
61 | where k = min(m,n), and each H(i) is of the form
|
---|
62 |
|
---|
63 | H(i) = 1 - tau * v * (v^T)
|
---|
64 |
|
---|
65 | where tau is a scalar stored in Tau[I]; v - real vector, so that v(0:i-1)=0,
|
---|
66 | v(i) = 1, v(i+1:n-1) stored in A(i,i+1:n-1).
|
---|
67 |
|
---|
68 | -- ALGLIB --
|
---|
69 | Copyright 2005-2007 by Bochkanov Sergey
|
---|
70 | *************************************************************************/
|
---|
71 | public static void rmatrixlq(ref double[,] a,
|
---|
72 | int m,
|
---|
73 | int n,
|
---|
74 | ref double[] tau)
|
---|
75 | {
|
---|
76 | double[] work = new double[0];
|
---|
77 | double[] t = new double[0];
|
---|
78 | int i = 0;
|
---|
79 | int k = 0;
|
---|
80 | int minmn = 0;
|
---|
81 | int maxmn = 0;
|
---|
82 | double tmp = 0;
|
---|
83 | int i_ = 0;
|
---|
84 | int i1_ = 0;
|
---|
85 |
|
---|
86 | minmn = Math.Min(m, n);
|
---|
87 | maxmn = Math.Max(m, n);
|
---|
88 | work = new double[m+1];
|
---|
89 | t = new double[n+1];
|
---|
90 | tau = new double[minmn-1+1];
|
---|
91 | k = Math.Min(m, n);
|
---|
92 | for(i=0; i<=k-1; i++)
|
---|
93 | {
|
---|
94 |
|
---|
95 | //
|
---|
96 | // Generate elementary reflector H(i) to annihilate A(i,i+1:n-1)
|
---|
97 | //
|
---|
98 | i1_ = (i) - (1);
|
---|
99 | for(i_=1; i_<=n-i;i_++)
|
---|
100 | {
|
---|
101 | t[i_] = a[i,i_+i1_];
|
---|
102 | }
|
---|
103 | reflections.generatereflection(ref t, n-i, ref tmp);
|
---|
104 | tau[i] = tmp;
|
---|
105 | i1_ = (1) - (i);
|
---|
106 | for(i_=i; i_<=n-1;i_++)
|
---|
107 | {
|
---|
108 | a[i,i_] = t[i_+i1_];
|
---|
109 | }
|
---|
110 | t[1] = 1;
|
---|
111 | if( i<n )
|
---|
112 | {
|
---|
113 |
|
---|
114 | //
|
---|
115 | // Apply H(i) to A(i+1:m,i:n) from the right
|
---|
116 | //
|
---|
117 | reflections.applyreflectionfromtheright(ref a, tau[i], ref t, i+1, m-1, i, n-1, ref work);
|
---|
118 | }
|
---|
119 | }
|
---|
120 | }
|
---|
121 |
|
---|
122 |
|
---|
123 | /*************************************************************************
|
---|
124 | Partial unpacking of matrix Q from the LQ decomposition of a matrix A
|
---|
125 |
|
---|
126 | Input parameters:
|
---|
127 | A - matrices L and Q in compact form.
|
---|
128 | Output of RMatrixLQ subroutine.
|
---|
129 | M - number of rows in given matrix A. M>=0.
|
---|
130 | N - number of columns in given matrix A. N>=0.
|
---|
131 | Tau - scalar factors which are used to form Q.
|
---|
132 | Output of the RMatrixLQ subroutine.
|
---|
133 | QRows - required number of rows in matrix Q. N>=QRows>=0.
|
---|
134 |
|
---|
135 | Output parameters:
|
---|
136 | Q - first QRows rows of matrix Q. Array whose indexes range
|
---|
137 | within [0..QRows-1, 0..N-1]. If QRows=0, the array remains
|
---|
138 | unchanged.
|
---|
139 |
|
---|
140 | -- ALGLIB --
|
---|
141 | Copyright 2005 by Bochkanov Sergey
|
---|
142 | *************************************************************************/
|
---|
143 | public static void rmatrixlqunpackq(ref double[,] a,
|
---|
144 | int m,
|
---|
145 | int n,
|
---|
146 | ref double[] tau,
|
---|
147 | int qrows,
|
---|
148 | ref double[,] q)
|
---|
149 | {
|
---|
150 | int i = 0;
|
---|
151 | int j = 0;
|
---|
152 | int k = 0;
|
---|
153 | int minmn = 0;
|
---|
154 | double[] v = new double[0];
|
---|
155 | double[] work = new double[0];
|
---|
156 | int i_ = 0;
|
---|
157 | int i1_ = 0;
|
---|
158 |
|
---|
159 | System.Diagnostics.Debug.Assert(qrows<=n, "RMatrixLQUnpackQ: QRows>N!");
|
---|
160 | if( m<=0 | n<=0 | qrows<=0 )
|
---|
161 | {
|
---|
162 | return;
|
---|
163 | }
|
---|
164 |
|
---|
165 | //
|
---|
166 | // init
|
---|
167 | //
|
---|
168 | minmn = Math.Min(m, n);
|
---|
169 | k = Math.Min(minmn, qrows);
|
---|
170 | q = new double[qrows-1+1, n-1+1];
|
---|
171 | v = new double[n+1];
|
---|
172 | work = new double[qrows+1];
|
---|
173 | for(i=0; i<=qrows-1; i++)
|
---|
174 | {
|
---|
175 | for(j=0; j<=n-1; j++)
|
---|
176 | {
|
---|
177 | if( i==j )
|
---|
178 | {
|
---|
179 | q[i,j] = 1;
|
---|
180 | }
|
---|
181 | else
|
---|
182 | {
|
---|
183 | q[i,j] = 0;
|
---|
184 | }
|
---|
185 | }
|
---|
186 | }
|
---|
187 |
|
---|
188 | //
|
---|
189 | // unpack Q
|
---|
190 | //
|
---|
191 | for(i=k-1; i>=0; i--)
|
---|
192 | {
|
---|
193 |
|
---|
194 | //
|
---|
195 | // Apply H(i)
|
---|
196 | //
|
---|
197 | i1_ = (i) - (1);
|
---|
198 | for(i_=1; i_<=n-i;i_++)
|
---|
199 | {
|
---|
200 | v[i_] = a[i,i_+i1_];
|
---|
201 | }
|
---|
202 | v[1] = 1;
|
---|
203 | reflections.applyreflectionfromtheright(ref q, tau[i], ref v, 0, qrows-1, i, n-1, ref work);
|
---|
204 | }
|
---|
205 | }
|
---|
206 |
|
---|
207 |
|
---|
208 | /*************************************************************************
|
---|
209 | Unpacking of matrix L from the LQ decomposition of a matrix A
|
---|
210 |
|
---|
211 | Input parameters:
|
---|
212 | A - matrices Q and L in compact form.
|
---|
213 | Output of RMatrixLQ subroutine.
|
---|
214 | M - number of rows in given matrix A. M>=0.
|
---|
215 | N - number of columns in given matrix A. N>=0.
|
---|
216 |
|
---|
217 | Output parameters:
|
---|
218 | L - matrix L, array[0..M-1, 0..N-1].
|
---|
219 |
|
---|
220 | -- ALGLIB --
|
---|
221 | Copyright 2005 by Bochkanov Sergey
|
---|
222 | *************************************************************************/
|
---|
223 | public static void rmatrixlqunpackl(ref double[,] a,
|
---|
224 | int m,
|
---|
225 | int n,
|
---|
226 | ref double[,] l)
|
---|
227 | {
|
---|
228 | int i = 0;
|
---|
229 | int k = 0;
|
---|
230 | int i_ = 0;
|
---|
231 |
|
---|
232 | if( m<=0 | n<=0 )
|
---|
233 | {
|
---|
234 | return;
|
---|
235 | }
|
---|
236 | l = new double[m-1+1, n-1+1];
|
---|
237 | for(i=0; i<=n-1; i++)
|
---|
238 | {
|
---|
239 | l[0,i] = 0;
|
---|
240 | }
|
---|
241 | for(i=1; i<=m-1; i++)
|
---|
242 | {
|
---|
243 | for(i_=0; i_<=n-1;i_++)
|
---|
244 | {
|
---|
245 | l[i,i_] = l[0,i_];
|
---|
246 | }
|
---|
247 | }
|
---|
248 | for(i=0; i<=m-1; i++)
|
---|
249 | {
|
---|
250 | k = Math.Min(i, n-1);
|
---|
251 | for(i_=0; i_<=k;i_++)
|
---|
252 | {
|
---|
253 | l[i,i_] = a[i,i_];
|
---|
254 | }
|
---|
255 | }
|
---|
256 | }
|
---|
257 |
|
---|
258 |
|
---|
259 | /*************************************************************************
|
---|
260 | Obsolete 1-based subroutine
|
---|
261 | See RMatrixLQ for 0-based replacement.
|
---|
262 | *************************************************************************/
|
---|
263 | public static void lqdecomposition(ref double[,] a,
|
---|
264 | int m,
|
---|
265 | int n,
|
---|
266 | ref double[] tau)
|
---|
267 | {
|
---|
268 | double[] work = new double[0];
|
---|
269 | double[] t = new double[0];
|
---|
270 | int i = 0;
|
---|
271 | int k = 0;
|
---|
272 | int nmip1 = 0;
|
---|
273 | int minmn = 0;
|
---|
274 | int maxmn = 0;
|
---|
275 | double tmp = 0;
|
---|
276 | int i_ = 0;
|
---|
277 | int i1_ = 0;
|
---|
278 |
|
---|
279 | minmn = Math.Min(m, n);
|
---|
280 | maxmn = Math.Max(m, n);
|
---|
281 | work = new double[m+1];
|
---|
282 | t = new double[n+1];
|
---|
283 | tau = new double[minmn+1];
|
---|
284 |
|
---|
285 | //
|
---|
286 | // Test the input arguments
|
---|
287 | //
|
---|
288 | k = Math.Min(m, n);
|
---|
289 | for(i=1; i<=k; i++)
|
---|
290 | {
|
---|
291 |
|
---|
292 | //
|
---|
293 | // Generate elementary reflector H(i) to annihilate A(i,i+1:n)
|
---|
294 | //
|
---|
295 | nmip1 = n-i+1;
|
---|
296 | i1_ = (i) - (1);
|
---|
297 | for(i_=1; i_<=nmip1;i_++)
|
---|
298 | {
|
---|
299 | t[i_] = a[i,i_+i1_];
|
---|
300 | }
|
---|
301 | reflections.generatereflection(ref t, nmip1, ref tmp);
|
---|
302 | tau[i] = tmp;
|
---|
303 | i1_ = (1) - (i);
|
---|
304 | for(i_=i; i_<=n;i_++)
|
---|
305 | {
|
---|
306 | a[i,i_] = t[i_+i1_];
|
---|
307 | }
|
---|
308 | t[1] = 1;
|
---|
309 | if( i<n )
|
---|
310 | {
|
---|
311 |
|
---|
312 | //
|
---|
313 | // Apply H(i) to A(i+1:m,i:n) from the right
|
---|
314 | //
|
---|
315 | reflections.applyreflectionfromtheright(ref a, tau[i], ref t, i+1, m, i, n, ref work);
|
---|
316 | }
|
---|
317 | }
|
---|
318 | }
|
---|
319 |
|
---|
320 |
|
---|
321 | /*************************************************************************
|
---|
322 | Obsolete 1-based subroutine
|
---|
323 | See RMatrixLQUnpackQ for 0-based replacement.
|
---|
324 | *************************************************************************/
|
---|
325 | public static void unpackqfromlq(ref double[,] a,
|
---|
326 | int m,
|
---|
327 | int n,
|
---|
328 | ref double[] tau,
|
---|
329 | int qrows,
|
---|
330 | ref double[,] q)
|
---|
331 | {
|
---|
332 | int i = 0;
|
---|
333 | int j = 0;
|
---|
334 | int k = 0;
|
---|
335 | int minmn = 0;
|
---|
336 | double[] v = new double[0];
|
---|
337 | double[] work = new double[0];
|
---|
338 | int vm = 0;
|
---|
339 | int i_ = 0;
|
---|
340 | int i1_ = 0;
|
---|
341 |
|
---|
342 | System.Diagnostics.Debug.Assert(qrows<=n, "UnpackQFromLQ: QRows>N!");
|
---|
343 | if( m==0 | n==0 | qrows==0 )
|
---|
344 | {
|
---|
345 | return;
|
---|
346 | }
|
---|
347 |
|
---|
348 | //
|
---|
349 | // init
|
---|
350 | //
|
---|
351 | minmn = Math.Min(m, n);
|
---|
352 | k = Math.Min(minmn, qrows);
|
---|
353 | q = new double[qrows+1, n+1];
|
---|
354 | v = new double[n+1];
|
---|
355 | work = new double[qrows+1];
|
---|
356 | for(i=1; i<=qrows; i++)
|
---|
357 | {
|
---|
358 | for(j=1; j<=n; j++)
|
---|
359 | {
|
---|
360 | if( i==j )
|
---|
361 | {
|
---|
362 | q[i,j] = 1;
|
---|
363 | }
|
---|
364 | else
|
---|
365 | {
|
---|
366 | q[i,j] = 0;
|
---|
367 | }
|
---|
368 | }
|
---|
369 | }
|
---|
370 |
|
---|
371 | //
|
---|
372 | // unpack Q
|
---|
373 | //
|
---|
374 | for(i=k; i>=1; i--)
|
---|
375 | {
|
---|
376 |
|
---|
377 | //
|
---|
378 | // Apply H(i)
|
---|
379 | //
|
---|
380 | vm = n-i+1;
|
---|
381 | i1_ = (i) - (1);
|
---|
382 | for(i_=1; i_<=vm;i_++)
|
---|
383 | {
|
---|
384 | v[i_] = a[i,i_+i1_];
|
---|
385 | }
|
---|
386 | v[1] = 1;
|
---|
387 | reflections.applyreflectionfromtheright(ref q, tau[i], ref v, 1, qrows, i, n, ref work);
|
---|
388 | }
|
---|
389 | }
|
---|
390 |
|
---|
391 |
|
---|
392 | /*************************************************************************
|
---|
393 | Obsolete 1-based subroutine
|
---|
394 | *************************************************************************/
|
---|
395 | public static void lqdecompositionunpacked(double[,] a,
|
---|
396 | int m,
|
---|
397 | int n,
|
---|
398 | ref double[,] l,
|
---|
399 | ref double[,] q)
|
---|
400 | {
|
---|
401 | int i = 0;
|
---|
402 | int j = 0;
|
---|
403 | double[] tau = new double[0];
|
---|
404 |
|
---|
405 | a = (double[,])a.Clone();
|
---|
406 |
|
---|
407 | if( n<=0 )
|
---|
408 | {
|
---|
409 | return;
|
---|
410 | }
|
---|
411 | q = new double[n+1, n+1];
|
---|
412 | l = new double[m+1, n+1];
|
---|
413 |
|
---|
414 | //
|
---|
415 | // LQDecomposition
|
---|
416 | //
|
---|
417 | lqdecomposition(ref a, m, n, ref tau);
|
---|
418 |
|
---|
419 | //
|
---|
420 | // L
|
---|
421 | //
|
---|
422 | for(i=1; i<=m; i++)
|
---|
423 | {
|
---|
424 | for(j=1; j<=n; j++)
|
---|
425 | {
|
---|
426 | if( j>i )
|
---|
427 | {
|
---|
428 | l[i,j] = 0;
|
---|
429 | }
|
---|
430 | else
|
---|
431 | {
|
---|
432 | l[i,j] = a[i,j];
|
---|
433 | }
|
---|
434 | }
|
---|
435 | }
|
---|
436 |
|
---|
437 | //
|
---|
438 | // Q
|
---|
439 | //
|
---|
440 | unpackqfromlq(ref a, m, n, ref tau, n, ref q);
|
---|
441 | }
|
---|
442 | }
|
---|