[2154] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2006-2007, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | Redistribution and use in source and binary forms, with or without
|
---|
| 5 | modification, are permitted provided that the following conditions are
|
---|
| 6 | met:
|
---|
| 7 |
|
---|
| 8 | - Redistributions of source code must retain the above copyright
|
---|
| 9 | notice, this list of conditions and the following disclaimer.
|
---|
| 10 |
|
---|
| 11 | - Redistributions in binary form must reproduce the above copyright
|
---|
| 12 | notice, this list of conditions and the following disclaimer listed
|
---|
| 13 | in this license in the documentation and/or other materials
|
---|
| 14 | provided with the distribution.
|
---|
| 15 |
|
---|
| 16 | - Neither the name of the copyright holders nor the names of its
|
---|
| 17 | contributors may be used to endorse or promote products derived from
|
---|
| 18 | this software without specific prior written permission.
|
---|
| 19 |
|
---|
| 20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
---|
| 21 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
---|
| 22 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
---|
| 23 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
---|
| 24 | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
| 25 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
---|
| 26 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 27 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 28 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 29 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
---|
| 30 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 31 | *************************************************************************/
|
---|
| 32 |
|
---|
| 33 | using System;
|
---|
| 34 |
|
---|
| 35 | class leastsquares
|
---|
| 36 | {
|
---|
| 37 | /*************************************************************************
|
---|
| 38 | Weighted approximation by arbitrary function basis in a space of arbitrary
|
---|
| 39 | dimension using linear least squares method.
|
---|
| 40 |
|
---|
| 41 | Input parameters:
|
---|
| 42 | Y - array[0..N-1]
|
---|
| 43 | It contains a set of function values in N points. Space
|
---|
| 44 | dimension and points don't matter. Procedure works with
|
---|
| 45 | function values in these points and values of basis functions
|
---|
| 46 | only.
|
---|
| 47 |
|
---|
| 48 | W - array[0..N-1]
|
---|
| 49 | It contains weights corresponding to function values. Each
|
---|
| 50 | summand in square sum of approximation deviations from given
|
---|
| 51 | values is multiplied by the square of corresponding weight.
|
---|
| 52 |
|
---|
| 53 | FMatrix-a table of basis functions values, array[0..N-1, 0..M-1].
|
---|
| 54 | FMatrix[I, J] - value of J-th basis function in I-th point.
|
---|
| 55 |
|
---|
| 56 | N - number of points used. N>=1.
|
---|
| 57 | M - number of basis functions, M>=1.
|
---|
| 58 |
|
---|
| 59 | Output parameters:
|
---|
| 60 | C - decomposition coefficients.
|
---|
| 61 | Array of real numbers whose index goes from 0 to M-1.
|
---|
| 62 | C[j] - j-th basis function coefficient.
|
---|
| 63 |
|
---|
| 64 | -- ALGLIB --
|
---|
| 65 | Copyright by Bochkanov Sergey
|
---|
| 66 | *************************************************************************/
|
---|
| 67 | public static void buildgeneralleastsquares(ref double[] y,
|
---|
| 68 | ref double[] w,
|
---|
| 69 | ref double[,] fmatrix,
|
---|
| 70 | int n,
|
---|
| 71 | int m,
|
---|
| 72 | ref double[] c)
|
---|
| 73 | {
|
---|
| 74 | int i = 0;
|
---|
| 75 | int j = 0;
|
---|
| 76 | double[,] a = new double[0,0];
|
---|
| 77 | double[,] q = new double[0,0];
|
---|
| 78 | double[,] vt = new double[0,0];
|
---|
| 79 | double[] b = new double[0];
|
---|
| 80 | double[] tau = new double[0];
|
---|
| 81 | double[,] b2 = new double[0,0];
|
---|
| 82 | double[] tauq = new double[0];
|
---|
| 83 | double[] taup = new double[0];
|
---|
| 84 | double[] d = new double[0];
|
---|
| 85 | double[] e = new double[0];
|
---|
| 86 | bool isuppera = new bool();
|
---|
| 87 | int mi = 0;
|
---|
| 88 | int ni = 0;
|
---|
| 89 | double v = 0;
|
---|
| 90 | int i_ = 0;
|
---|
| 91 | int i1_ = 0;
|
---|
| 92 |
|
---|
| 93 | mi = n;
|
---|
| 94 | ni = m;
|
---|
| 95 | c = new double[ni-1+1];
|
---|
| 96 |
|
---|
| 97 | //
|
---|
| 98 | // Initialize design matrix.
|
---|
| 99 | // Here we are making MI>=NI.
|
---|
| 100 | //
|
---|
| 101 | a = new double[ni+1, Math.Max(mi, ni)+1];
|
---|
| 102 | b = new double[Math.Max(mi, ni)+1];
|
---|
| 103 | for(i=1; i<=mi; i++)
|
---|
| 104 | {
|
---|
| 105 | b[i] = w[i-1]*y[i-1];
|
---|
| 106 | }
|
---|
| 107 | for(i=mi+1; i<=ni; i++)
|
---|
| 108 | {
|
---|
| 109 | b[i] = 0;
|
---|
| 110 | }
|
---|
| 111 | for(j=1; j<=ni; j++)
|
---|
| 112 | {
|
---|
| 113 | i1_ = (0) - (1);
|
---|
| 114 | for(i_=1; i_<=mi;i_++)
|
---|
| 115 | {
|
---|
| 116 | a[j,i_] = fmatrix[i_+i1_,j-1];
|
---|
| 117 | }
|
---|
| 118 | }
|
---|
| 119 | for(j=1; j<=ni; j++)
|
---|
| 120 | {
|
---|
| 121 | for(i=mi+1; i<=ni; i++)
|
---|
| 122 | {
|
---|
| 123 | a[j,i] = 0;
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 | for(j=1; j<=ni; j++)
|
---|
| 127 | {
|
---|
| 128 | for(i=1; i<=mi; i++)
|
---|
| 129 | {
|
---|
| 130 | a[j,i] = a[j,i]*w[i-1];
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 | mi = Math.Max(mi, ni);
|
---|
| 134 |
|
---|
| 135 | //
|
---|
| 136 | // LQ-decomposition of A'
|
---|
| 137 | // B2 := Q*B
|
---|
| 138 | //
|
---|
| 139 | lq.lqdecomposition(ref a, ni, mi, ref tau);
|
---|
| 140 | lq.unpackqfromlq(ref a, ni, mi, ref tau, ni, ref q);
|
---|
| 141 | b2 = new double[1+1, ni+1];
|
---|
| 142 | for(j=1; j<=ni; j++)
|
---|
| 143 | {
|
---|
| 144 | b2[1,j] = 0;
|
---|
| 145 | }
|
---|
| 146 | for(i=1; i<=ni; i++)
|
---|
| 147 | {
|
---|
| 148 | v = 0.0;
|
---|
| 149 | for(i_=1; i_<=mi;i_++)
|
---|
| 150 | {
|
---|
| 151 | v += b[i_]*q[i,i_];
|
---|
| 152 | }
|
---|
| 153 | b2[1,i] = v;
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | //
|
---|
| 157 | // Back from A' to A
|
---|
| 158 | // Making cols(A)=rows(A)
|
---|
| 159 | //
|
---|
| 160 | for(i=1; i<=ni-1; i++)
|
---|
| 161 | {
|
---|
| 162 | for(i_=i+1; i_<=ni;i_++)
|
---|
| 163 | {
|
---|
| 164 | a[i,i_] = a[i_,i];
|
---|
| 165 | }
|
---|
| 166 | }
|
---|
| 167 | for(i=2; i<=ni; i++)
|
---|
| 168 | {
|
---|
| 169 | for(j=1; j<=i-1; j++)
|
---|
| 170 | {
|
---|
| 171 | a[i,j] = 0;
|
---|
| 172 | }
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | //
|
---|
| 176 | // Bidiagonal decomposition of A
|
---|
| 177 | // A = Q * d2 * P'
|
---|
| 178 | // B2 := (Q'*B2')'
|
---|
| 179 | //
|
---|
| 180 | bidiagonal.tobidiagonal(ref a, ni, ni, ref tauq, ref taup);
|
---|
| 181 | bidiagonal.multiplybyqfrombidiagonal(ref a, ni, ni, ref tauq, ref b2, 1, ni, true, false);
|
---|
| 182 | bidiagonal.unpackptfrombidiagonal(ref a, ni, ni, ref taup, ni, ref vt);
|
---|
| 183 | bidiagonal.unpackdiagonalsfrombidiagonal(ref a, ni, ni, ref isuppera, ref d, ref e);
|
---|
| 184 |
|
---|
| 185 | //
|
---|
| 186 | // Singular value decomposition of A
|
---|
| 187 | // A = U * d * V'
|
---|
| 188 | // B2 := (U'*B2')'
|
---|
| 189 | //
|
---|
| 190 | if( !bdsvd.bidiagonalsvddecomposition(ref d, e, ni, isuppera, false, ref b2, 1, ref q, 0, ref vt, ni) )
|
---|
| 191 | {
|
---|
| 192 | for(i=0; i<=ni-1; i++)
|
---|
| 193 | {
|
---|
| 194 | c[i] = 0;
|
---|
| 195 | }
|
---|
| 196 | return;
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | //
|
---|
| 200 | // B2 := (d^(-1) * B2')'
|
---|
| 201 | //
|
---|
| 202 | if( d[1]!=0 )
|
---|
| 203 | {
|
---|
| 204 | for(i=1; i<=ni; i++)
|
---|
| 205 | {
|
---|
| 206 | if( d[i]>AP.Math.MachineEpsilon*10*Math.Sqrt(ni)*d[1] )
|
---|
| 207 | {
|
---|
| 208 | b2[1,i] = b2[1,i]/d[i];
|
---|
| 209 | }
|
---|
| 210 | else
|
---|
| 211 | {
|
---|
| 212 | b2[1,i] = 0;
|
---|
| 213 | }
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 |
|
---|
| 217 | //
|
---|
| 218 | // B := (V * B2')'
|
---|
| 219 | //
|
---|
| 220 | for(i=1; i<=ni; i++)
|
---|
| 221 | {
|
---|
| 222 | b[i] = 0;
|
---|
| 223 | }
|
---|
| 224 | for(i=1; i<=ni; i++)
|
---|
| 225 | {
|
---|
| 226 | v = b2[1,i];
|
---|
| 227 | for(i_=1; i_<=ni;i_++)
|
---|
| 228 | {
|
---|
| 229 | b[i_] = b[i_] + v*vt[i,i_];
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | //
|
---|
| 234 | // Out
|
---|
| 235 | //
|
---|
| 236 | for(i=1; i<=ni; i++)
|
---|
| 237 | {
|
---|
| 238 | c[i-1] = b[i];
|
---|
| 239 | }
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 |
|
---|
| 243 | /*************************************************************************
|
---|
| 244 | Linear approximation using least squares method
|
---|
| 245 |
|
---|
| 246 | The subroutine calculates coefficients of the line approximating given
|
---|
| 247 | function.
|
---|
| 248 |
|
---|
| 249 | Input parameters:
|
---|
| 250 | X - array[0..N-1], it contains a set of abscissas.
|
---|
| 251 | Y - array[0..N-1], function values.
|
---|
| 252 | N - number of points, N>=1
|
---|
| 253 |
|
---|
| 254 | Output parameters:
|
---|
| 255 | a, b- coefficients of linear approximation a+b*t
|
---|
| 256 |
|
---|
| 257 | -- ALGLIB --
|
---|
| 258 | Copyright by Bochkanov Sergey
|
---|
| 259 | *************************************************************************/
|
---|
| 260 | public static void buildlinearleastsquares(ref double[] x,
|
---|
| 261 | ref double[] y,
|
---|
| 262 | int n,
|
---|
| 263 | ref double a,
|
---|
| 264 | ref double b)
|
---|
| 265 | {
|
---|
| 266 | double pp = 0;
|
---|
| 267 | double qq = 0;
|
---|
| 268 | double pq = 0;
|
---|
| 269 | double b1 = 0;
|
---|
| 270 | double b2 = 0;
|
---|
| 271 | double d1 = 0;
|
---|
| 272 | double d2 = 0;
|
---|
| 273 | double t1 = 0;
|
---|
| 274 | double t2 = 0;
|
---|
| 275 | double phi = 0;
|
---|
| 276 | double c = 0;
|
---|
| 277 | double s = 0;
|
---|
| 278 | double m = 0;
|
---|
| 279 | int i = 0;
|
---|
| 280 |
|
---|
| 281 | pp = n;
|
---|
| 282 | qq = 0;
|
---|
| 283 | pq = 0;
|
---|
| 284 | b1 = 0;
|
---|
| 285 | b2 = 0;
|
---|
| 286 | for(i=0; i<=n-1; i++)
|
---|
| 287 | {
|
---|
| 288 | pq = pq+x[i];
|
---|
| 289 | qq = qq+AP.Math.Sqr(x[i]);
|
---|
| 290 | b1 = b1+y[i];
|
---|
| 291 | b2 = b2+x[i]*y[i];
|
---|
| 292 | }
|
---|
| 293 | phi = Math.Atan2(2*pq, qq-pp)/2;
|
---|
| 294 | c = Math.Cos(phi);
|
---|
| 295 | s = Math.Sin(phi);
|
---|
| 296 | d1 = AP.Math.Sqr(c)*pp+AP.Math.Sqr(s)*qq-2*s*c*pq;
|
---|
| 297 | d2 = AP.Math.Sqr(s)*pp+AP.Math.Sqr(c)*qq+2*s*c*pq;
|
---|
| 298 | if( Math.Abs(d1)>Math.Abs(d2) )
|
---|
| 299 | {
|
---|
| 300 | m = Math.Abs(d1);
|
---|
| 301 | }
|
---|
| 302 | else
|
---|
| 303 | {
|
---|
| 304 | m = Math.Abs(d2);
|
---|
| 305 | }
|
---|
| 306 | t1 = c*b1-s*b2;
|
---|
| 307 | t2 = s*b1+c*b2;
|
---|
| 308 | if( Math.Abs(d1)>m*AP.Math.MachineEpsilon*1000 )
|
---|
| 309 | {
|
---|
| 310 | t1 = t1/d1;
|
---|
| 311 | }
|
---|
| 312 | else
|
---|
| 313 | {
|
---|
| 314 | t1 = 0;
|
---|
| 315 | }
|
---|
| 316 | if( Math.Abs(d2)>m*AP.Math.MachineEpsilon*1000 )
|
---|
| 317 | {
|
---|
| 318 | t2 = t2/d2;
|
---|
| 319 | }
|
---|
| 320 | else
|
---|
| 321 | {
|
---|
| 322 | t2 = 0;
|
---|
| 323 | }
|
---|
| 324 | a = c*t1+s*t2;
|
---|
| 325 | b = -(s*t1)+c*t2;
|
---|
| 326 | }
|
---|
| 327 |
|
---|
| 328 |
|
---|
| 329 | /*************************************************************************
|
---|
| 330 | Weighted cubic spline approximation using linear least squares
|
---|
| 331 |
|
---|
| 332 | Input parameters:
|
---|
| 333 | X - array[0..N-1], abscissas
|
---|
| 334 | Y - array[0..N-1], function values
|
---|
| 335 | W - array[0..N-1], weights.
|
---|
| 336 | A, B- interval to build splines in.
|
---|
| 337 | N - number of points used. N>=1.
|
---|
| 338 | M - number of basic splines, M>=2.
|
---|
| 339 |
|
---|
| 340 | Output parameters:
|
---|
| 341 | CTbl- coefficients table to be used by SplineInterpolation function.
|
---|
| 342 | -- ALGLIB --
|
---|
| 343 | Copyright by Bochkanov Sergey
|
---|
| 344 | *************************************************************************/
|
---|
| 345 | public static void buildsplineleastsquares(ref double[] x,
|
---|
| 346 | ref double[] y,
|
---|
| 347 | ref double[] w,
|
---|
| 348 | double a,
|
---|
| 349 | double b,
|
---|
| 350 | int n,
|
---|
| 351 | int m,
|
---|
| 352 | ref double[] ctbl)
|
---|
| 353 | {
|
---|
| 354 | int i = 0;
|
---|
| 355 | int j = 0;
|
---|
| 356 | double[,] ma = new double[0,0];
|
---|
| 357 | double[,] q = new double[0,0];
|
---|
| 358 | double[,] vt = new double[0,0];
|
---|
| 359 | double[] mb = new double[0];
|
---|
| 360 | double[] tau = new double[0];
|
---|
| 361 | double[,] b2 = new double[0,0];
|
---|
| 362 | double[] tauq = new double[0];
|
---|
| 363 | double[] taup = new double[0];
|
---|
| 364 | double[] d = new double[0];
|
---|
| 365 | double[] e = new double[0];
|
---|
| 366 | bool isuppera = new bool();
|
---|
| 367 | int mi = 0;
|
---|
| 368 | int ni = 0;
|
---|
| 369 | double v = 0;
|
---|
| 370 | double[] sx = new double[0];
|
---|
| 371 | double[] sy = new double[0];
|
---|
| 372 | int i_ = 0;
|
---|
| 373 |
|
---|
| 374 | System.Diagnostics.Debug.Assert(m>=2, "BuildSplineLeastSquares: M is too small!");
|
---|
| 375 | mi = n;
|
---|
| 376 | ni = m;
|
---|
| 377 | sx = new double[ni-1+1];
|
---|
| 378 | sy = new double[ni-1+1];
|
---|
| 379 |
|
---|
| 380 | //
|
---|
| 381 | // Initializing design matrix
|
---|
| 382 | // Here we are making MI>=NI
|
---|
| 383 | //
|
---|
| 384 | ma = new double[ni+1, Math.Max(mi, ni)+1];
|
---|
| 385 | mb = new double[Math.Max(mi, ni)+1];
|
---|
| 386 | for(j=0; j<=ni-1; j++)
|
---|
| 387 | {
|
---|
| 388 | sx[j] = a+(b-a)*j/(ni-1);
|
---|
| 389 | }
|
---|
| 390 | for(j=0; j<=ni-1; j++)
|
---|
| 391 | {
|
---|
| 392 | for(i=0; i<=ni-1; i++)
|
---|
| 393 | {
|
---|
| 394 | sy[i] = 0;
|
---|
| 395 | }
|
---|
| 396 | sy[j] = 1;
|
---|
| 397 | spline3.buildcubicspline(sx, sy, ni, 0, 0.0, 0, 0.0, ref ctbl);
|
---|
| 398 | for(i=0; i<=mi-1; i++)
|
---|
| 399 | {
|
---|
| 400 | ma[j+1,i+1] = w[i]*spline3.splineinterpolation(ref ctbl, x[i]);
|
---|
| 401 | }
|
---|
| 402 | }
|
---|
| 403 | for(j=1; j<=ni; j++)
|
---|
| 404 | {
|
---|
| 405 | for(i=mi+1; i<=ni; i++)
|
---|
| 406 | {
|
---|
| 407 | ma[j,i] = 0;
|
---|
| 408 | }
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | //
|
---|
| 412 | // Initializing right part
|
---|
| 413 | //
|
---|
| 414 | for(i=0; i<=mi-1; i++)
|
---|
| 415 | {
|
---|
| 416 | mb[i+1] = w[i]*y[i];
|
---|
| 417 | }
|
---|
| 418 | for(i=mi+1; i<=ni; i++)
|
---|
| 419 | {
|
---|
| 420 | mb[i] = 0;
|
---|
| 421 | }
|
---|
| 422 | mi = Math.Max(mi, ni);
|
---|
| 423 |
|
---|
| 424 | //
|
---|
| 425 | // LQ-decomposition of A'
|
---|
| 426 | // B2 := Q*B
|
---|
| 427 | //
|
---|
| 428 | lq.lqdecomposition(ref ma, ni, mi, ref tau);
|
---|
| 429 | lq.unpackqfromlq(ref ma, ni, mi, ref tau, ni, ref q);
|
---|
| 430 | b2 = new double[1+1, ni+1];
|
---|
| 431 | for(j=1; j<=ni; j++)
|
---|
| 432 | {
|
---|
| 433 | b2[1,j] = 0;
|
---|
| 434 | }
|
---|
| 435 | for(i=1; i<=ni; i++)
|
---|
| 436 | {
|
---|
| 437 | v = 0.0;
|
---|
| 438 | for(i_=1; i_<=mi;i_++)
|
---|
| 439 | {
|
---|
| 440 | v += mb[i_]*q[i,i_];
|
---|
| 441 | }
|
---|
| 442 | b2[1,i] = v;
|
---|
| 443 | }
|
---|
| 444 |
|
---|
| 445 | //
|
---|
| 446 | // Back from A' to A
|
---|
| 447 | // Making cols(A)=rows(A)
|
---|
| 448 | //
|
---|
| 449 | for(i=1; i<=ni-1; i++)
|
---|
| 450 | {
|
---|
| 451 | for(i_=i+1; i_<=ni;i_++)
|
---|
| 452 | {
|
---|
| 453 | ma[i,i_] = ma[i_,i];
|
---|
| 454 | }
|
---|
| 455 | }
|
---|
| 456 | for(i=2; i<=ni; i++)
|
---|
| 457 | {
|
---|
| 458 | for(j=1; j<=i-1; j++)
|
---|
| 459 | {
|
---|
| 460 | ma[i,j] = 0;
|
---|
| 461 | }
|
---|
| 462 | }
|
---|
| 463 |
|
---|
| 464 | //
|
---|
| 465 | // Bidiagonal decomposition of A
|
---|
| 466 | // A = Q * d2 * P'
|
---|
| 467 | // B2 := (Q'*B2')'
|
---|
| 468 | //
|
---|
| 469 | bidiagonal.tobidiagonal(ref ma, ni, ni, ref tauq, ref taup);
|
---|
| 470 | bidiagonal.multiplybyqfrombidiagonal(ref ma, ni, ni, ref tauq, ref b2, 1, ni, true, false);
|
---|
| 471 | bidiagonal.unpackptfrombidiagonal(ref ma, ni, ni, ref taup, ni, ref vt);
|
---|
| 472 | bidiagonal.unpackdiagonalsfrombidiagonal(ref ma, ni, ni, ref isuppera, ref d, ref e);
|
---|
| 473 |
|
---|
| 474 | //
|
---|
| 475 | // Singular value decomposition of A
|
---|
| 476 | // A = U * d * V'
|
---|
| 477 | // B2 := (U'*B2')'
|
---|
| 478 | //
|
---|
| 479 | if( !bdsvd.bidiagonalsvddecomposition(ref d, e, ni, isuppera, false, ref b2, 1, ref q, 0, ref vt, ni) )
|
---|
| 480 | {
|
---|
| 481 | for(i=1; i<=ni; i++)
|
---|
| 482 | {
|
---|
| 483 | d[i] = 0;
|
---|
| 484 | b2[1,i] = 0;
|
---|
| 485 | for(j=1; j<=ni; j++)
|
---|
| 486 | {
|
---|
| 487 | if( i==j )
|
---|
| 488 | {
|
---|
| 489 | vt[i,j] = 1;
|
---|
| 490 | }
|
---|
| 491 | else
|
---|
| 492 | {
|
---|
| 493 | vt[i,j] = 0;
|
---|
| 494 | }
|
---|
| 495 | }
|
---|
| 496 | }
|
---|
| 497 | b2[1,1] = 1;
|
---|
| 498 | }
|
---|
| 499 |
|
---|
| 500 | //
|
---|
| 501 | // B2 := (d^(-1) * B2')'
|
---|
| 502 | //
|
---|
| 503 | for(i=1; i<=ni; i++)
|
---|
| 504 | {
|
---|
| 505 | if( d[i]>AP.Math.MachineEpsilon*10*Math.Sqrt(ni)*d[1] )
|
---|
| 506 | {
|
---|
| 507 | b2[1,i] = b2[1,i]/d[i];
|
---|
| 508 | }
|
---|
| 509 | else
|
---|
| 510 | {
|
---|
| 511 | b2[1,i] = 0;
|
---|
| 512 | }
|
---|
| 513 | }
|
---|
| 514 |
|
---|
| 515 | //
|
---|
| 516 | // B := (V * B2')'
|
---|
| 517 | //
|
---|
| 518 | for(i=1; i<=ni; i++)
|
---|
| 519 | {
|
---|
| 520 | mb[i] = 0;
|
---|
| 521 | }
|
---|
| 522 | for(i=1; i<=ni; i++)
|
---|
| 523 | {
|
---|
| 524 | v = b2[1,i];
|
---|
| 525 | for(i_=1; i_<=ni;i_++)
|
---|
| 526 | {
|
---|
| 527 | mb[i_] = mb[i_] + v*vt[i,i_];
|
---|
| 528 | }
|
---|
| 529 | }
|
---|
| 530 |
|
---|
| 531 | //
|
---|
| 532 | // Forming result spline
|
---|
| 533 | //
|
---|
| 534 | for(i=0; i<=ni-1; i++)
|
---|
| 535 | {
|
---|
| 536 | sy[i] = mb[i+1];
|
---|
| 537 | }
|
---|
| 538 | spline3.buildcubicspline(sx, sy, ni, 0, 0.0, 0, 0.0, ref ctbl);
|
---|
| 539 | }
|
---|
| 540 |
|
---|
| 541 |
|
---|
| 542 | /*************************************************************************
|
---|
| 543 | Polynomial approximation using least squares method
|
---|
| 544 |
|
---|
| 545 | The subroutine calculates coefficients of the polynomial approximating
|
---|
| 546 | given function. It is recommended to use this function only if you need to
|
---|
| 547 | obtain coefficients of approximation polynomial. If you have to build and
|
---|
| 548 | calculate polynomial approximation (NOT coefficients), it's better to use
|
---|
| 549 | BuildChebyshevLeastSquares subroutine in combination with
|
---|
| 550 | CalculateChebyshevLeastSquares subroutine. The result of Chebyshev
|
---|
| 551 | polynomial approximation is equivalent to the result obtained using powers
|
---|
| 552 | of X, but has higher accuracy due to better numerical properties of
|
---|
| 553 | Chebyshev polynomials.
|
---|
| 554 |
|
---|
| 555 | Input parameters:
|
---|
| 556 | X - array[0..N-1], abscissas
|
---|
| 557 | Y - array[0..N-1], function values
|
---|
| 558 | N - number of points, N>=1
|
---|
| 559 | M - order of polynomial required, M>=0
|
---|
| 560 |
|
---|
| 561 | Output parameters:
|
---|
| 562 | C - approximating polynomial coefficients, array[0..M],
|
---|
| 563 | C[i] - coefficient at X^i.
|
---|
| 564 |
|
---|
| 565 | -- ALGLIB --
|
---|
| 566 | Copyright by Bochkanov Sergey
|
---|
| 567 | *************************************************************************/
|
---|
| 568 | public static void buildpolynomialleastsquares(ref double[] x,
|
---|
| 569 | ref double[] y,
|
---|
| 570 | int n,
|
---|
| 571 | int m,
|
---|
| 572 | ref double[] c)
|
---|
| 573 | {
|
---|
| 574 | double[] ctbl = new double[0];
|
---|
| 575 | double[] w = new double[0];
|
---|
| 576 | double[] c1 = new double[0];
|
---|
| 577 | double maxx = 0;
|
---|
| 578 | double minx = 0;
|
---|
| 579 | int i = 0;
|
---|
| 580 | int j = 0;
|
---|
| 581 | int k = 0;
|
---|
| 582 | double e = 0;
|
---|
| 583 | double d = 0;
|
---|
| 584 | double l1 = 0;
|
---|
| 585 | double l2 = 0;
|
---|
| 586 | double[] z2 = new double[0];
|
---|
| 587 | double[] z1 = new double[0];
|
---|
| 588 |
|
---|
| 589 |
|
---|
| 590 | //
|
---|
| 591 | // Initialize
|
---|
| 592 | //
|
---|
| 593 | maxx = x[0];
|
---|
| 594 | minx = x[0];
|
---|
| 595 | for(i=1; i<=n-1; i++)
|
---|
| 596 | {
|
---|
| 597 | if( x[i]>maxx )
|
---|
| 598 | {
|
---|
| 599 | maxx = x[i];
|
---|
| 600 | }
|
---|
| 601 | if( x[i]<minx )
|
---|
| 602 | {
|
---|
| 603 | minx = x[i];
|
---|
| 604 | }
|
---|
| 605 | }
|
---|
| 606 | if( minx==maxx )
|
---|
| 607 | {
|
---|
| 608 | minx = minx-0.5;
|
---|
| 609 | maxx = maxx+0.5;
|
---|
| 610 | }
|
---|
| 611 | w = new double[n-1+1];
|
---|
| 612 | for(i=0; i<=n-1; i++)
|
---|
| 613 | {
|
---|
| 614 | w[i] = 1;
|
---|
| 615 | }
|
---|
| 616 |
|
---|
| 617 | //
|
---|
| 618 | // Build Chebyshev approximation
|
---|
| 619 | //
|
---|
| 620 | buildchebyshevleastsquares(ref x, ref y, ref w, minx, maxx, n, m, ref ctbl);
|
---|
| 621 |
|
---|
| 622 | //
|
---|
| 623 | // From Chebyshev to powers of X
|
---|
| 624 | //
|
---|
| 625 | c1 = new double[m+1];
|
---|
| 626 | for(i=0; i<=m; i++)
|
---|
| 627 | {
|
---|
| 628 | c1[i] = 0;
|
---|
| 629 | }
|
---|
| 630 | d = 0;
|
---|
| 631 | for(i=0; i<=m; i++)
|
---|
| 632 | {
|
---|
| 633 | for(k=i; k<=m; k++)
|
---|
| 634 | {
|
---|
| 635 | e = c1[k];
|
---|
| 636 | c1[k] = 0;
|
---|
| 637 | if( i<=1 & k==i )
|
---|
| 638 | {
|
---|
| 639 | c1[k] = 1;
|
---|
| 640 | }
|
---|
| 641 | else
|
---|
| 642 | {
|
---|
| 643 | if( i!=0 )
|
---|
| 644 | {
|
---|
| 645 | c1[k] = 2*d;
|
---|
| 646 | }
|
---|
| 647 | if( k>i+1 )
|
---|
| 648 | {
|
---|
| 649 | c1[k] = c1[k]-c1[k-2];
|
---|
| 650 | }
|
---|
| 651 | }
|
---|
| 652 | d = e;
|
---|
| 653 | }
|
---|
| 654 | d = c1[i];
|
---|
| 655 | e = 0;
|
---|
| 656 | k = i;
|
---|
| 657 | while( k<=m )
|
---|
| 658 | {
|
---|
| 659 | e = e+c1[k]*ctbl[k];
|
---|
| 660 | k = k+2;
|
---|
| 661 | }
|
---|
| 662 | c1[i] = e;
|
---|
| 663 | }
|
---|
| 664 |
|
---|
| 665 | //
|
---|
| 666 | // Linear translation
|
---|
| 667 | //
|
---|
| 668 | l1 = 2/(ctbl[m+2]-ctbl[m+1]);
|
---|
| 669 | l2 = -(2*ctbl[m+1]/(ctbl[m+2]-ctbl[m+1]))-1;
|
---|
| 670 | c = new double[m+1];
|
---|
| 671 | z2 = new double[m+1];
|
---|
| 672 | z1 = new double[m+1];
|
---|
| 673 | c[0] = c1[0];
|
---|
| 674 | z1[0] = 1;
|
---|
| 675 | z2[0] = 1;
|
---|
| 676 | for(i=1; i<=m; i++)
|
---|
| 677 | {
|
---|
| 678 | z2[i] = 1;
|
---|
| 679 | z1[i] = l2*z1[i-1];
|
---|
| 680 | c[0] = c[0]+c1[i]*z1[i];
|
---|
| 681 | }
|
---|
| 682 | for(j=1; j<=m; j++)
|
---|
| 683 | {
|
---|
| 684 | z2[0] = l1*z2[0];
|
---|
| 685 | c[j] = c1[j]*z2[0];
|
---|
| 686 | for(i=j+1; i<=m; i++)
|
---|
| 687 | {
|
---|
| 688 | k = i-j;
|
---|
| 689 | z2[k] = l1*z2[k]+z2[k-1];
|
---|
| 690 | c[j] = c[j]+c1[i]*z2[k]*z1[k];
|
---|
| 691 | }
|
---|
| 692 | }
|
---|
| 693 | }
|
---|
| 694 |
|
---|
| 695 |
|
---|
| 696 | /*************************************************************************
|
---|
| 697 | Chebyshev polynomial approximation using least squares method.
|
---|
| 698 |
|
---|
| 699 | The algorithm reduces interval [A, B] to the interval [-1,1], then builds
|
---|
| 700 | least squares approximation using Chebyshev polynomials.
|
---|
| 701 |
|
---|
| 702 | Input parameters:
|
---|
| 703 | X - array[0..N-1], abscissas
|
---|
| 704 | Y - array[0..N-1], function values
|
---|
| 705 | W - array[0..N-1], weights
|
---|
| 706 | A, B- interval to build approximating polynomials in.
|
---|
| 707 | N - number of points used. N>=1.
|
---|
| 708 | M - order of polynomial, M>=0. This parameter is passed into
|
---|
| 709 | CalculateChebyshevLeastSquares function.
|
---|
| 710 |
|
---|
| 711 | Output parameters:
|
---|
| 712 | CTbl - coefficient table. This parameter is passed into
|
---|
| 713 | CalculateChebyshevLeastSquares function.
|
---|
| 714 | -- ALGLIB --
|
---|
| 715 | Copyright by Bochkanov Sergey
|
---|
| 716 | *************************************************************************/
|
---|
| 717 | public static void buildchebyshevleastsquares(ref double[] x,
|
---|
| 718 | ref double[] y,
|
---|
| 719 | ref double[] w,
|
---|
| 720 | double a,
|
---|
| 721 | double b,
|
---|
| 722 | int n,
|
---|
| 723 | int m,
|
---|
| 724 | ref double[] ctbl)
|
---|
| 725 | {
|
---|
| 726 | int i = 0;
|
---|
| 727 | int j = 0;
|
---|
| 728 | double[,] ma = new double[0,0];
|
---|
| 729 | double[,] q = new double[0,0];
|
---|
| 730 | double[,] vt = new double[0,0];
|
---|
| 731 | double[] mb = new double[0];
|
---|
| 732 | double[] tau = new double[0];
|
---|
| 733 | double[,] b2 = new double[0,0];
|
---|
| 734 | double[] tauq = new double[0];
|
---|
| 735 | double[] taup = new double[0];
|
---|
| 736 | double[] d = new double[0];
|
---|
| 737 | double[] e = new double[0];
|
---|
| 738 | bool isuppera = new bool();
|
---|
| 739 | int mi = 0;
|
---|
| 740 | int ni = 0;
|
---|
| 741 | double v = 0;
|
---|
| 742 | int i_ = 0;
|
---|
| 743 |
|
---|
| 744 | mi = n;
|
---|
| 745 | ni = m+1;
|
---|
| 746 |
|
---|
| 747 | //
|
---|
| 748 | // Initializing design matrix
|
---|
| 749 | // Here we are making MI>=NI
|
---|
| 750 | //
|
---|
| 751 | ma = new double[ni+1, Math.Max(mi, ni)+1];
|
---|
| 752 | mb = new double[Math.Max(mi, ni)+1];
|
---|
| 753 | for(j=1; j<=ni; j++)
|
---|
| 754 | {
|
---|
| 755 | for(i=1; i<=mi; i++)
|
---|
| 756 | {
|
---|
| 757 | v = 2*(x[i-1]-a)/(b-a)-1;
|
---|
| 758 | if( j==1 )
|
---|
| 759 | {
|
---|
| 760 | ma[j,i] = 1.0;
|
---|
| 761 | }
|
---|
| 762 | if( j==2 )
|
---|
| 763 | {
|
---|
| 764 | ma[j,i] = v;
|
---|
| 765 | }
|
---|
| 766 | if( j>2 )
|
---|
| 767 | {
|
---|
| 768 | ma[j,i] = 2.0*v*ma[j-1,i]-ma[j-2,i];
|
---|
| 769 | }
|
---|
| 770 | }
|
---|
| 771 | }
|
---|
| 772 | for(j=1; j<=ni; j++)
|
---|
| 773 | {
|
---|
| 774 | for(i=1; i<=mi; i++)
|
---|
| 775 | {
|
---|
| 776 | ma[j,i] = w[i-1]*ma[j,i];
|
---|
| 777 | }
|
---|
| 778 | }
|
---|
| 779 | for(j=1; j<=ni; j++)
|
---|
| 780 | {
|
---|
| 781 | for(i=mi+1; i<=ni; i++)
|
---|
| 782 | {
|
---|
| 783 | ma[j,i] = 0;
|
---|
| 784 | }
|
---|
| 785 | }
|
---|
| 786 |
|
---|
| 787 | //
|
---|
| 788 | // Initializing right part
|
---|
| 789 | //
|
---|
| 790 | for(i=0; i<=mi-1; i++)
|
---|
| 791 | {
|
---|
| 792 | mb[i+1] = w[i]*y[i];
|
---|
| 793 | }
|
---|
| 794 | for(i=mi+1; i<=ni; i++)
|
---|
| 795 | {
|
---|
| 796 | mb[i] = 0;
|
---|
| 797 | }
|
---|
| 798 | mi = Math.Max(mi, ni);
|
---|
| 799 |
|
---|
| 800 | //
|
---|
| 801 | // LQ-decomposition of A'
|
---|
| 802 | // B2 := Q*B
|
---|
| 803 | //
|
---|
| 804 | lq.lqdecomposition(ref ma, ni, mi, ref tau);
|
---|
| 805 | lq.unpackqfromlq(ref ma, ni, mi, ref tau, ni, ref q);
|
---|
| 806 | b2 = new double[1+1, ni+1];
|
---|
| 807 | for(j=1; j<=ni; j++)
|
---|
| 808 | {
|
---|
| 809 | b2[1,j] = 0;
|
---|
| 810 | }
|
---|
| 811 | for(i=1; i<=ni; i++)
|
---|
| 812 | {
|
---|
| 813 | v = 0.0;
|
---|
| 814 | for(i_=1; i_<=mi;i_++)
|
---|
| 815 | {
|
---|
| 816 | v += mb[i_]*q[i,i_];
|
---|
| 817 | }
|
---|
| 818 | b2[1,i] = v;
|
---|
| 819 | }
|
---|
| 820 |
|
---|
| 821 | //
|
---|
| 822 | // Back from A' to A
|
---|
| 823 | // Making cols(A)=rows(A)
|
---|
| 824 | //
|
---|
| 825 | for(i=1; i<=ni-1; i++)
|
---|
| 826 | {
|
---|
| 827 | for(i_=i+1; i_<=ni;i_++)
|
---|
| 828 | {
|
---|
| 829 | ma[i,i_] = ma[i_,i];
|
---|
| 830 | }
|
---|
| 831 | }
|
---|
| 832 | for(i=2; i<=ni; i++)
|
---|
| 833 | {
|
---|
| 834 | for(j=1; j<=i-1; j++)
|
---|
| 835 | {
|
---|
| 836 | ma[i,j] = 0;
|
---|
| 837 | }
|
---|
| 838 | }
|
---|
| 839 |
|
---|
| 840 | //
|
---|
| 841 | // Bidiagonal decomposition of A
|
---|
| 842 | // A = Q * d2 * P'
|
---|
| 843 | // B2 := (Q'*B2')'
|
---|
| 844 | //
|
---|
| 845 | bidiagonal.tobidiagonal(ref ma, ni, ni, ref tauq, ref taup);
|
---|
| 846 | bidiagonal.multiplybyqfrombidiagonal(ref ma, ni, ni, ref tauq, ref b2, 1, ni, true, false);
|
---|
| 847 | bidiagonal.unpackptfrombidiagonal(ref ma, ni, ni, ref taup, ni, ref vt);
|
---|
| 848 | bidiagonal.unpackdiagonalsfrombidiagonal(ref ma, ni, ni, ref isuppera, ref d, ref e);
|
---|
| 849 |
|
---|
| 850 | //
|
---|
| 851 | // Singular value decomposition of A
|
---|
| 852 | // A = U * d * V'
|
---|
| 853 | // B2 := (U'*B2')'
|
---|
| 854 | //
|
---|
| 855 | if( !bdsvd.bidiagonalsvddecomposition(ref d, e, ni, isuppera, false, ref b2, 1, ref q, 0, ref vt, ni) )
|
---|
| 856 | {
|
---|
| 857 | for(i=1; i<=ni; i++)
|
---|
| 858 | {
|
---|
| 859 | d[i] = 0;
|
---|
| 860 | b2[1,i] = 0;
|
---|
| 861 | for(j=1; j<=ni; j++)
|
---|
| 862 | {
|
---|
| 863 | if( i==j )
|
---|
| 864 | {
|
---|
| 865 | vt[i,j] = 1;
|
---|
| 866 | }
|
---|
| 867 | else
|
---|
| 868 | {
|
---|
| 869 | vt[i,j] = 0;
|
---|
| 870 | }
|
---|
| 871 | }
|
---|
| 872 | }
|
---|
| 873 | b2[1,1] = 1;
|
---|
| 874 | }
|
---|
| 875 |
|
---|
| 876 | //
|
---|
| 877 | // B2 := (d^(-1) * B2')'
|
---|
| 878 | //
|
---|
| 879 | for(i=1; i<=ni; i++)
|
---|
| 880 | {
|
---|
| 881 | if( d[i]>AP.Math.MachineEpsilon*10*Math.Sqrt(ni)*d[1] )
|
---|
| 882 | {
|
---|
| 883 | b2[1,i] = b2[1,i]/d[i];
|
---|
| 884 | }
|
---|
| 885 | else
|
---|
| 886 | {
|
---|
| 887 | b2[1,i] = 0;
|
---|
| 888 | }
|
---|
| 889 | }
|
---|
| 890 |
|
---|
| 891 | //
|
---|
| 892 | // B := (V * B2')'
|
---|
| 893 | //
|
---|
| 894 | for(i=1; i<=ni; i++)
|
---|
| 895 | {
|
---|
| 896 | mb[i] = 0;
|
---|
| 897 | }
|
---|
| 898 | for(i=1; i<=ni; i++)
|
---|
| 899 | {
|
---|
| 900 | v = b2[1,i];
|
---|
| 901 | for(i_=1; i_<=ni;i_++)
|
---|
| 902 | {
|
---|
| 903 | mb[i_] = mb[i_] + v*vt[i,i_];
|
---|
| 904 | }
|
---|
| 905 | }
|
---|
| 906 |
|
---|
| 907 | //
|
---|
| 908 | // Forming result
|
---|
| 909 | //
|
---|
| 910 | ctbl = new double[ni+1+1];
|
---|
| 911 | for(i=1; i<=ni; i++)
|
---|
| 912 | {
|
---|
| 913 | ctbl[i-1] = mb[i];
|
---|
| 914 | }
|
---|
| 915 | ctbl[ni] = a;
|
---|
| 916 | ctbl[ni+1] = b;
|
---|
| 917 | }
|
---|
| 918 |
|
---|
| 919 |
|
---|
| 920 | /*************************************************************************
|
---|
| 921 | Weighted Chebyshev polynomial constrained least squares approximation.
|
---|
| 922 |
|
---|
| 923 | The algorithm reduces [A,B] to [-1,1] and builds the Chebyshev polynomials
|
---|
| 924 | series by approximating a given function using the least squares method.
|
---|
| 925 |
|
---|
| 926 | Input parameters:
|
---|
| 927 | X - abscissas, array[0..N-1]
|
---|
| 928 | Y - function values, array[0..N-1]
|
---|
| 929 | W - weights, array[0..N-1]. Each item in the squared sum of
|
---|
| 930 | deviations from given values is multiplied by a square of
|
---|
| 931 | corresponding weight.
|
---|
| 932 | A, B- interval in which the approximating polynomials are built.
|
---|
| 933 | N - number of points, N>0.
|
---|
| 934 | XC, YC, DC-
|
---|
| 935 | constraints (see description below)., array[0..NC-1]
|
---|
| 936 | NC - number of constraints. 0 <= NC < M+1.
|
---|
| 937 | M - degree of polynomial, M>=0. This parameter is passed into the
|
---|
| 938 | CalculateChebyshevLeastSquares subroutine.
|
---|
| 939 |
|
---|
| 940 | Output parameters:
|
---|
| 941 | CTbl- coefficient table. This parameter is passed into the
|
---|
| 942 | CalculateChebyshevLeastSquares subroutine.
|
---|
| 943 |
|
---|
| 944 | Result:
|
---|
| 945 | True, if the algorithm succeeded.
|
---|
| 946 | False, if the internal singular value decomposition subroutine hasn't
|
---|
| 947 | converged or the given constraints could not be met simultaneously (e.g.
|
---|
| 948 | P(0)=0 è P(0)=1).
|
---|
| 949 |
|
---|
| 950 | Specifying constraints:
|
---|
| 951 | This subroutine can solve the problem having constrained function
|
---|
| 952 | values or its derivatives in several points. NC specifies the number of
|
---|
| 953 | constraints, DC - the type of constraints, XC and YC - constraints as such.
|
---|
| 954 | Thus, for each i from 0 to NC-1 the following constraint is given:
|
---|
| 955 | P(xc[i]) = yc[i], if DC[i]=0
|
---|
| 956 | or
|
---|
| 957 | d/dx(P(xc[i])) = yc[i], if DC[i]=1
|
---|
| 958 | (here P(x) is approximating polynomial).
|
---|
| 959 | This version of the subroutine supports only either polynomial or its
|
---|
| 960 | derivative value constraints. If DC[i] is not equal to 0 and 1, the
|
---|
| 961 | subroutine will be aborted. The number of constraints should be less than
|
---|
| 962 | the number of degrees of freedom of approximating polynomial - M+1 (at
|
---|
| 963 | that, it could be equal to 0).
|
---|
| 964 |
|
---|
| 965 | -- ALGLIB --
|
---|
| 966 | Copyright by Bochkanov Sergey
|
---|
| 967 | *************************************************************************/
|
---|
| 968 | public static bool buildchebyshevleastsquaresconstrained(ref double[] x,
|
---|
| 969 | ref double[] y,
|
---|
| 970 | ref double[] w,
|
---|
| 971 | double a,
|
---|
| 972 | double b,
|
---|
| 973 | int n,
|
---|
| 974 | ref double[] xc,
|
---|
| 975 | ref double[] yc,
|
---|
| 976 | ref int[] dc,
|
---|
| 977 | int nc,
|
---|
| 978 | int m,
|
---|
| 979 | ref double[] ctbl)
|
---|
| 980 | {
|
---|
| 981 | bool result = new bool();
|
---|
| 982 | int i = 0;
|
---|
| 983 | int j = 0;
|
---|
| 984 | int reducedsize = 0;
|
---|
| 985 | double[,] designmatrix = new double[0,0];
|
---|
| 986 | double[] rightpart = new double[0];
|
---|
| 987 | double[,] cmatrix = new double[0,0];
|
---|
| 988 | double[,] c = new double[0,0];
|
---|
| 989 | double[,] u = new double[0,0];
|
---|
| 990 | double[,] vt = new double[0,0];
|
---|
| 991 | double[] d = new double[0];
|
---|
| 992 | double[] cr = new double[0];
|
---|
| 993 | double[] ws = new double[0];
|
---|
| 994 | double[] tj = new double[0];
|
---|
| 995 | double[] uj = new double[0];
|
---|
| 996 | double[] dtj = new double[0];
|
---|
| 997 | double[] tmp = new double[0];
|
---|
| 998 | double[] tmp2 = new double[0];
|
---|
| 999 | double[,] tmpmatrix = new double[0,0];
|
---|
| 1000 | double v = 0;
|
---|
| 1001 | int i_ = 0;
|
---|
| 1002 |
|
---|
| 1003 | System.Diagnostics.Debug.Assert(n>0);
|
---|
| 1004 | System.Diagnostics.Debug.Assert(m>=0);
|
---|
| 1005 | System.Diagnostics.Debug.Assert(nc>=0 & nc<m+1);
|
---|
| 1006 | result = true;
|
---|
| 1007 |
|
---|
| 1008 | //
|
---|
| 1009 | // Initialize design matrix and right part.
|
---|
| 1010 | // Add fictional rows if needed to ensure that N>=M+1.
|
---|
| 1011 | //
|
---|
| 1012 | designmatrix = new double[Math.Max(n, m+1)+1, m+1+1];
|
---|
| 1013 | rightpart = new double[Math.Max(n, m+1)+1];
|
---|
| 1014 | for(i=1; i<=n; i++)
|
---|
| 1015 | {
|
---|
| 1016 | for(j=1; j<=m+1; j++)
|
---|
| 1017 | {
|
---|
| 1018 | v = 2*(x[i-1]-a)/(b-a)-1;
|
---|
| 1019 | if( j==1 )
|
---|
| 1020 | {
|
---|
| 1021 | designmatrix[i,j] = 1.0;
|
---|
| 1022 | }
|
---|
| 1023 | if( j==2 )
|
---|
| 1024 | {
|
---|
| 1025 | designmatrix[i,j] = v;
|
---|
| 1026 | }
|
---|
| 1027 | if( j>2 )
|
---|
| 1028 | {
|
---|
| 1029 | designmatrix[i,j] = 2.0*v*designmatrix[i,j-1]-designmatrix[i,j-2];
|
---|
| 1030 | }
|
---|
| 1031 | }
|
---|
| 1032 | }
|
---|
| 1033 | for(i=1; i<=n; i++)
|
---|
| 1034 | {
|
---|
| 1035 | for(j=1; j<=m+1; j++)
|
---|
| 1036 | {
|
---|
| 1037 | designmatrix[i,j] = w[i-1]*designmatrix[i,j];
|
---|
| 1038 | }
|
---|
| 1039 | }
|
---|
| 1040 | for(i=n+1; i<=m+1; i++)
|
---|
| 1041 | {
|
---|
| 1042 | for(j=1; j<=m+1; j++)
|
---|
| 1043 | {
|
---|
| 1044 | designmatrix[i,j] = 0;
|
---|
| 1045 | }
|
---|
| 1046 | }
|
---|
| 1047 | for(i=0; i<=n-1; i++)
|
---|
| 1048 | {
|
---|
| 1049 | rightpart[i+1] = w[i]*y[i];
|
---|
| 1050 | }
|
---|
| 1051 | for(i=n+1; i<=m+1; i++)
|
---|
| 1052 | {
|
---|
| 1053 | rightpart[i] = 0;
|
---|
| 1054 | }
|
---|
| 1055 | n = Math.Max(n, m+1);
|
---|
| 1056 |
|
---|
| 1057 | //
|
---|
| 1058 | // Now N>=M+1 and we are ready to the next stage.
|
---|
| 1059 | // Handle constraints.
|
---|
| 1060 | // Represent feasible set of coefficients as x = C*t + d
|
---|
| 1061 | //
|
---|
| 1062 | c = new double[m+1+1, m+1+1];
|
---|
| 1063 | d = new double[m+1+1];
|
---|
| 1064 | if( nc==0 )
|
---|
| 1065 | {
|
---|
| 1066 |
|
---|
| 1067 | //
|
---|
| 1068 | // No constraints
|
---|
| 1069 | //
|
---|
| 1070 | for(i=1; i<=m+1; i++)
|
---|
| 1071 | {
|
---|
| 1072 | for(j=1; j<=m+1; j++)
|
---|
| 1073 | {
|
---|
| 1074 | c[i,j] = 0;
|
---|
| 1075 | }
|
---|
| 1076 | d[i] = 0;
|
---|
| 1077 | }
|
---|
| 1078 | for(i=1; i<=m+1; i++)
|
---|
| 1079 | {
|
---|
| 1080 | c[i,i] = 1;
|
---|
| 1081 | }
|
---|
| 1082 | reducedsize = m+1;
|
---|
| 1083 | }
|
---|
| 1084 | else
|
---|
| 1085 | {
|
---|
| 1086 |
|
---|
| 1087 | //
|
---|
| 1088 | // Constraints are present.
|
---|
| 1089 | // Fill constraints matrix CMatrix and solve CMatrix*x = cr.
|
---|
| 1090 | //
|
---|
| 1091 | cmatrix = new double[nc+1, m+1+1];
|
---|
| 1092 | cr = new double[nc+1];
|
---|
| 1093 | tj = new double[m+1];
|
---|
| 1094 | uj = new double[m+1];
|
---|
| 1095 | dtj = new double[m+1];
|
---|
| 1096 | for(i=0; i<=nc-1; i++)
|
---|
| 1097 | {
|
---|
| 1098 | v = 2*(xc[i]-a)/(b-a)-1;
|
---|
| 1099 | for(j=0; j<=m; j++)
|
---|
| 1100 | {
|
---|
| 1101 | if( j==0 )
|
---|
| 1102 | {
|
---|
| 1103 | tj[j] = 1;
|
---|
| 1104 | uj[j] = 1;
|
---|
| 1105 | dtj[j] = 0;
|
---|
| 1106 | }
|
---|
| 1107 | if( j==1 )
|
---|
| 1108 | {
|
---|
| 1109 | tj[j] = v;
|
---|
| 1110 | uj[j] = 2*v;
|
---|
| 1111 | dtj[j] = 1;
|
---|
| 1112 | }
|
---|
| 1113 | if( j>1 )
|
---|
| 1114 | {
|
---|
| 1115 | tj[j] = 2*v*tj[j-1]-tj[j-2];
|
---|
| 1116 | uj[j] = 2*v*uj[j-1]-uj[j-2];
|
---|
| 1117 | dtj[j] = j*uj[j-1];
|
---|
| 1118 | }
|
---|
| 1119 | System.Diagnostics.Debug.Assert(dc[i]==0 | dc[i]==1);
|
---|
| 1120 | if( dc[i]==0 )
|
---|
| 1121 | {
|
---|
| 1122 | cmatrix[i+1,j+1] = tj[j];
|
---|
| 1123 | }
|
---|
| 1124 | if( dc[i]==1 )
|
---|
| 1125 | {
|
---|
| 1126 | cmatrix[i+1,j+1] = dtj[j];
|
---|
| 1127 | }
|
---|
| 1128 | }
|
---|
| 1129 | cr[i+1] = yc[i];
|
---|
| 1130 | }
|
---|
| 1131 |
|
---|
| 1132 | //
|
---|
| 1133 | // Solve CMatrix*x = cr.
|
---|
| 1134 | // Fill C and d:
|
---|
| 1135 | // 1. SVD: CMatrix = U * WS * V^T
|
---|
| 1136 | // 2. C := V[1:M+1,NC+1:M+1]
|
---|
| 1137 | // 3. tmp := WS^-1 * U^T * cr
|
---|
| 1138 | // 4. d := V[1:M+1,1:NC] * tmp
|
---|
| 1139 | //
|
---|
| 1140 | if( !svd.svddecomposition(cmatrix, nc, m+1, 2, 2, 2, ref ws, ref u, ref vt) )
|
---|
| 1141 | {
|
---|
| 1142 | result = false;
|
---|
| 1143 | return result;
|
---|
| 1144 | }
|
---|
| 1145 | if( ws[1]==0 | ws[nc]<=AP.Math.MachineEpsilon*10*Math.Sqrt(nc)*ws[1] )
|
---|
| 1146 | {
|
---|
| 1147 | result = false;
|
---|
| 1148 | return result;
|
---|
| 1149 | }
|
---|
| 1150 | c = new double[m+1+1, m+1-nc+1];
|
---|
| 1151 | d = new double[m+1+1];
|
---|
| 1152 | for(i=1; i<=m+1-nc; i++)
|
---|
| 1153 | {
|
---|
| 1154 | for(i_=1; i_<=m+1;i_++)
|
---|
| 1155 | {
|
---|
| 1156 | c[i_,i] = vt[nc+i,i_];
|
---|
| 1157 | }
|
---|
| 1158 | }
|
---|
| 1159 | tmp = new double[nc+1];
|
---|
| 1160 | for(i=1; i<=nc; i++)
|
---|
| 1161 | {
|
---|
| 1162 | v = 0.0;
|
---|
| 1163 | for(i_=1; i_<=nc;i_++)
|
---|
| 1164 | {
|
---|
| 1165 | v += u[i_,i]*cr[i_];
|
---|
| 1166 | }
|
---|
| 1167 | tmp[i] = v/ws[i];
|
---|
| 1168 | }
|
---|
| 1169 | for(i=1; i<=m+1; i++)
|
---|
| 1170 | {
|
---|
| 1171 | d[i] = 0;
|
---|
| 1172 | }
|
---|
| 1173 | for(i=1; i<=nc; i++)
|
---|
| 1174 | {
|
---|
| 1175 | v = tmp[i];
|
---|
| 1176 | for(i_=1; i_<=m+1;i_++)
|
---|
| 1177 | {
|
---|
| 1178 | d[i_] = d[i_] + v*vt[i,i_];
|
---|
| 1179 | }
|
---|
| 1180 | }
|
---|
| 1181 |
|
---|
| 1182 | //
|
---|
| 1183 | // Reduce problem:
|
---|
| 1184 | // 1. RightPart := RightPart - DesignMatrix*d
|
---|
| 1185 | // 2. DesignMatrix := DesignMatrix*C
|
---|
| 1186 | //
|
---|
| 1187 | for(i=1; i<=n; i++)
|
---|
| 1188 | {
|
---|
| 1189 | v = 0.0;
|
---|
| 1190 | for(i_=1; i_<=m+1;i_++)
|
---|
| 1191 | {
|
---|
| 1192 | v += designmatrix[i,i_]*d[i_];
|
---|
| 1193 | }
|
---|
| 1194 | rightpart[i] = rightpart[i]-v;
|
---|
| 1195 | }
|
---|
| 1196 | reducedsize = m+1-nc;
|
---|
| 1197 | tmpmatrix = new double[n+1, reducedsize+1];
|
---|
| 1198 | tmp = new double[n+1];
|
---|
| 1199 | blas.matrixmatrixmultiply(ref designmatrix, 1, n, 1, m+1, false, ref c, 1, m+1, 1, reducedsize, false, 1.0, ref tmpmatrix, 1, n, 1, reducedsize, 0.0, ref tmp);
|
---|
| 1200 | blas.copymatrix(ref tmpmatrix, 1, n, 1, reducedsize, ref designmatrix, 1, n, 1, reducedsize);
|
---|
| 1201 | }
|
---|
| 1202 |
|
---|
| 1203 | //
|
---|
| 1204 | // Solve reduced problem DesignMatrix*t = RightPart.
|
---|
| 1205 | //
|
---|
| 1206 | if( !svd.svddecomposition(designmatrix, n, reducedsize, 1, 1, 2, ref ws, ref u, ref vt) )
|
---|
| 1207 | {
|
---|
| 1208 | result = false;
|
---|
| 1209 | return result;
|
---|
| 1210 | }
|
---|
| 1211 | tmp = new double[reducedsize+1];
|
---|
| 1212 | tmp2 = new double[reducedsize+1];
|
---|
| 1213 | for(i=1; i<=reducedsize; i++)
|
---|
| 1214 | {
|
---|
| 1215 | tmp[i] = 0;
|
---|
| 1216 | }
|
---|
| 1217 | for(i=1; i<=n; i++)
|
---|
| 1218 | {
|
---|
| 1219 | v = rightpart[i];
|
---|
| 1220 | for(i_=1; i_<=reducedsize;i_++)
|
---|
| 1221 | {
|
---|
| 1222 | tmp[i_] = tmp[i_] + v*u[i,i_];
|
---|
| 1223 | }
|
---|
| 1224 | }
|
---|
| 1225 | for(i=1; i<=reducedsize; i++)
|
---|
| 1226 | {
|
---|
| 1227 | if( ws[i]!=0 & ws[i]>AP.Math.MachineEpsilon*10*Math.Sqrt(nc)*ws[1] )
|
---|
| 1228 | {
|
---|
| 1229 | tmp[i] = tmp[i]/ws[i];
|
---|
| 1230 | }
|
---|
| 1231 | else
|
---|
| 1232 | {
|
---|
| 1233 | tmp[i] = 0;
|
---|
| 1234 | }
|
---|
| 1235 | }
|
---|
| 1236 | for(i=1; i<=reducedsize; i++)
|
---|
| 1237 | {
|
---|
| 1238 | tmp2[i] = 0;
|
---|
| 1239 | }
|
---|
| 1240 | for(i=1; i<=reducedsize; i++)
|
---|
| 1241 | {
|
---|
| 1242 | v = tmp[i];
|
---|
| 1243 | for(i_=1; i_<=reducedsize;i_++)
|
---|
| 1244 | {
|
---|
| 1245 | tmp2[i_] = tmp2[i_] + v*vt[i,i_];
|
---|
| 1246 | }
|
---|
| 1247 | }
|
---|
| 1248 |
|
---|
| 1249 | //
|
---|
| 1250 | // Solution is in the tmp2.
|
---|
| 1251 | // Transform it from t to x.
|
---|
| 1252 | //
|
---|
| 1253 | ctbl = new double[m+2+1];
|
---|
| 1254 | for(i=1; i<=m+1; i++)
|
---|
| 1255 | {
|
---|
| 1256 | v = 0.0;
|
---|
| 1257 | for(i_=1; i_<=reducedsize;i_++)
|
---|
| 1258 | {
|
---|
| 1259 | v += c[i,i_]*tmp2[i_];
|
---|
| 1260 | }
|
---|
| 1261 | ctbl[i-1] = v+d[i];
|
---|
| 1262 | }
|
---|
| 1263 | ctbl[m+1] = a;
|
---|
| 1264 | ctbl[m+2] = b;
|
---|
| 1265 | return result;
|
---|
| 1266 | }
|
---|
| 1267 |
|
---|
| 1268 |
|
---|
| 1269 | /*************************************************************************
|
---|
| 1270 | Calculation of a Chebyshev polynomial obtained during least squares
|
---|
| 1271 | approximaion at the given point.
|
---|
| 1272 |
|
---|
| 1273 | Input parameters:
|
---|
| 1274 | M - order of polynomial (parameter of the
|
---|
| 1275 | BuildChebyshevLeastSquares function).
|
---|
| 1276 | A - coefficient table.
|
---|
| 1277 | A[0..M] contains coefficients of the i-th Chebyshev polynomial.
|
---|
| 1278 | A[M+1] contains left boundary of approximation interval.
|
---|
| 1279 | A[M+2] contains right boundary of approximation interval.
|
---|
| 1280 | X - point to perform calculations in.
|
---|
| 1281 |
|
---|
| 1282 | The result is the value at the given point.
|
---|
| 1283 |
|
---|
| 1284 | It should be noted that array A contains coefficients of the Chebyshev
|
---|
| 1285 | polynomials defined on interval [-1,1]. Argument is reduced to this
|
---|
| 1286 | interval before calculating polynomial value.
|
---|
| 1287 | -- ALGLIB --
|
---|
| 1288 | Copyright by Bochkanov Sergey
|
---|
| 1289 | *************************************************************************/
|
---|
| 1290 | public static double calculatechebyshevleastsquares(int m,
|
---|
| 1291 | ref double[] a,
|
---|
| 1292 | double x)
|
---|
| 1293 | {
|
---|
| 1294 | double result = 0;
|
---|
| 1295 | double b1 = 0;
|
---|
| 1296 | double b2 = 0;
|
---|
| 1297 | int i = 0;
|
---|
| 1298 |
|
---|
| 1299 | x = 2*(x-a[m+1])/(a[m+2]-a[m+1])-1;
|
---|
| 1300 | b1 = 0;
|
---|
| 1301 | b2 = 0;
|
---|
| 1302 | i = m;
|
---|
| 1303 | do
|
---|
| 1304 | {
|
---|
| 1305 | result = 2*x*b1-b2+a[i];
|
---|
| 1306 | b2 = b1;
|
---|
| 1307 | b1 = result;
|
---|
| 1308 | i = i-1;
|
---|
| 1309 | }
|
---|
| 1310 | while( i>=0 );
|
---|
| 1311 | result = result-x*b2;
|
---|
| 1312 | return result;
|
---|
| 1313 | }
|
---|
| 1314 | }
|
---|