1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using System;
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Text;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.DataAnalysis;
|
---|
28 | using HeuristicLab.Modeling;
|
---|
29 | using HeuristicLab.GP;
|
---|
30 | using HeuristicLab.GP.StructureIdentification;
|
---|
31 | using HeuristicLab.GP.Interfaces;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.LinearRegression {
|
---|
34 | public class LinearRegressionOperator : OperatorBase {
|
---|
35 | private static double constant = 1.0;
|
---|
36 |
|
---|
37 | public LinearRegressionOperator() {
|
---|
38 | AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
|
---|
39 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("LinearRegressionModel", "Formula that was calculated by linear regression", typeof(IGeneticProgrammingModel), VariableKind.Out | VariableKind.New));
|
---|
43 | }
|
---|
44 |
|
---|
45 | public override IOperation Apply(IScope scope) {
|
---|
46 | int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
|
---|
47 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
48 | int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
|
---|
49 | int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
|
---|
50 | List<int> allowedRows = CalculateAllowedRows(dataset, targetVariable, start, end);
|
---|
51 | List<int> allowedColumns = CalculateAllowedColumns(dataset, targetVariable, start, end);
|
---|
52 |
|
---|
53 | double[,] inputMatrix = PrepareInputMatrix(dataset, allowedColumns, allowedRows);
|
---|
54 | double[] targetVector = PrepareTargetVector(dataset, targetVariable, allowedRows);
|
---|
55 | double[] coefficients = CalculateCoefficients(inputMatrix, targetVector);
|
---|
56 | IFunctionTree tree = CreateModel(coefficients, allowedColumns.Select(i => dataset.GetVariableName(i)).ToList());
|
---|
57 |
|
---|
58 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("LinearRegressionModel"), new GeneticProgrammingModel(tree)));
|
---|
59 | return null;
|
---|
60 | }
|
---|
61 |
|
---|
62 | private IFunctionTree CreateModel(double[] coefficients, List<string> allowedVariables) {
|
---|
63 | IFunctionTree root = new Addition().GetTreeNode();
|
---|
64 | IFunctionTree actNode = root;
|
---|
65 |
|
---|
66 | Queue<IFunctionTree> nodes = new Queue<IFunctionTree>();
|
---|
67 | GP.StructureIdentification.Variable v;
|
---|
68 | for (int i = 0; i < coefficients.Length - 1; i++) {
|
---|
69 | var vNode = (VariableFunctionTree)new GP.StructureIdentification.Variable().GetTreeNode();
|
---|
70 | vNode.VariableName = allowedVariables[i];
|
---|
71 | vNode.Weight = coefficients[i];
|
---|
72 | vNode.SampleOffset = 0;
|
---|
73 | nodes.Enqueue(vNode);
|
---|
74 | }
|
---|
75 | var cNode = (ConstantFunctionTree)new Constant().GetTreeNode();
|
---|
76 |
|
---|
77 | cNode.Value = coefficients[coefficients.Length - 1];
|
---|
78 | nodes.Enqueue(cNode);
|
---|
79 |
|
---|
80 | IFunctionTree newTree;
|
---|
81 | while (nodes.Count != 1) {
|
---|
82 | newTree = new Addition().GetTreeNode();
|
---|
83 | newTree.AddSubTree(nodes.Dequeue());
|
---|
84 | newTree.AddSubTree(nodes.Dequeue());
|
---|
85 | nodes.Enqueue(newTree);
|
---|
86 | }
|
---|
87 |
|
---|
88 | return nodes.Dequeue();
|
---|
89 | }
|
---|
90 |
|
---|
91 | private double[] CalculateCoefficients(double[,] inputMatrix, double[] targetVector) {
|
---|
92 | double[] weights = new double[targetVector.Length];
|
---|
93 | double[] coefficients = new double[inputMatrix.GetLength(1)];
|
---|
94 | for (int i = 0; i < weights.Length; i++) weights[i] = 1.0;
|
---|
95 | // call external ALGLIB solver
|
---|
96 | leastsquares.buildgeneralleastsquares(ref targetVector, ref weights, ref inputMatrix, inputMatrix.GetLength(0), inputMatrix.GetLength(1), ref coefficients);
|
---|
97 |
|
---|
98 | return coefficients;
|
---|
99 | }
|
---|
100 |
|
---|
101 | //returns list of valid row indexes (rows without NaN values)
|
---|
102 | private List<int> CalculateAllowedRows(Dataset dataset, int targetVariable, int start, int end) {
|
---|
103 | List<int> allowedRows = new List<int>();
|
---|
104 | bool add;
|
---|
105 | for (int row = start; row < end; row++) {
|
---|
106 | add = true;
|
---|
107 | for (int col = 0; col < dataset.Columns && add == true; col++) {
|
---|
108 | if (double.IsNaN(dataset.GetValue(row, col)) ||
|
---|
109 | double.IsNaN(dataset.GetValue(row, targetVariable)))
|
---|
110 | add = false;
|
---|
111 | }
|
---|
112 | if (add)
|
---|
113 | allowedRows.Add(row);
|
---|
114 | add = true;
|
---|
115 | }
|
---|
116 | return allowedRows;
|
---|
117 | }
|
---|
118 |
|
---|
119 | //returns list of valid column indexes (columns which contain at least one non-zero value)
|
---|
120 | private List<int> CalculateAllowedColumns(Dataset dataset, int targetVariable, int start, int end) {
|
---|
121 | List<int> allowedColumns = new List<int>();
|
---|
122 | for (int i = 0; i < dataset.Columns; i++) {
|
---|
123 | if (i == targetVariable) continue;
|
---|
124 | if (!dataset.GetMinimum(i, start, end).IsAlmost(0.0) ||
|
---|
125 | !dataset.GetMaximum(i, start, end).IsAlmost(0.0))
|
---|
126 | allowedColumns.Add(i);
|
---|
127 | }
|
---|
128 | return allowedColumns;
|
---|
129 | }
|
---|
130 |
|
---|
131 | private double[,] PrepareInputMatrix(Dataset dataset, List<int> allowedColumns, List<int> allowedRows) {
|
---|
132 | int rowCount = allowedRows.Count;
|
---|
133 | double[,] matrix = new double[rowCount, allowedColumns.Count + 1];
|
---|
134 | for (int col = 0; col < allowedColumns.Count; col++) {
|
---|
135 | for (int row = 0; row < allowedRows.Count; row++)
|
---|
136 | matrix[row, col] = dataset.GetValue(allowedRows[row], allowedColumns[col]);
|
---|
137 | }
|
---|
138 | //add constant 1.0 in last column
|
---|
139 | for (int i = 0; i < rowCount; i++)
|
---|
140 | matrix[i, allowedColumns.Count] = constant;
|
---|
141 | return matrix;
|
---|
142 | }
|
---|
143 |
|
---|
144 | private double[] PrepareTargetVector(Dataset dataset, int targetVariable, List<int> allowedRows) {
|
---|
145 | int rowCount = allowedRows.Count;
|
---|
146 | double[] targetVector = new double[rowCount];
|
---|
147 | double[] samples = dataset.Samples;
|
---|
148 | for (int row = 0; row < rowCount; row++) {
|
---|
149 | targetVector[row] = dataset.GetValue(allowedRows[row], targetVariable);
|
---|
150 | }
|
---|
151 | return targetVector;
|
---|
152 | }
|
---|
153 | }
|
---|
154 | }
|
---|