1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using System;
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using System.Text;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.DataAnalysis;
|
---|
29 | using HeuristicLab.Modeling;
|
---|
30 | using HeuristicLab.GP;
|
---|
31 | using HeuristicLab.GP.StructureIdentification;
|
---|
32 | using HeuristicLab.GP.Interfaces;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.LinearRegression {
|
---|
35 | public class LinearRegressionOperator : OperatorBase {
|
---|
36 | private static double constant = 1.0;
|
---|
37 |
|
---|
38 | public LinearRegressionOperator() {
|
---|
39 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("InputVariables", "List of allowed input variable names", typeof(ItemList), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
43 | AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
44 | AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) Maximal time offset for time-series prognosis", typeof(IntData), VariableKind.In));
|
---|
45 | AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) Minimal time offset for time-series prognosis", typeof(IntData), VariableKind.In));
|
---|
46 | AddVariableInfo(new VariableInfo("LinearRegressionModel", "Formula that was calculated by linear regression", typeof(IGeneticProgrammingModel), VariableKind.Out | VariableKind.New));
|
---|
47 | }
|
---|
48 |
|
---|
49 | public override IOperation Apply(IScope scope) {
|
---|
50 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
51 | string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
52 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
53 | int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
|
---|
54 | int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
|
---|
55 | IntData maxTimeOffsetData = GetVariableValue<IntData>("MaxTimeOffset", scope, true, false);
|
---|
56 | int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data;
|
---|
57 | IntData minTimeOffsetData = GetVariableValue<IntData>("MinTimeOffset", scope, true, false);
|
---|
58 | int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data;
|
---|
59 | ItemList inputVariables = GetVariableValue<ItemList>("InputVariables", scope, true, false);
|
---|
60 |
|
---|
61 | IFunctionTree tree;
|
---|
62 | if (inputVariables != null) {
|
---|
63 | tree = CreateModel(dataset, targetVariable, inputVariables.Cast<StringData>().Select(x => x.Data), start, end, minTimeOffset, maxTimeOffset);
|
---|
64 | } else {
|
---|
65 | tree = CreateModel(dataset, targetVariable, dataset.VariableNames, start, end, minTimeOffset, maxTimeOffset);
|
---|
66 | }
|
---|
67 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("LinearRegressionModel"), new GeneticProgrammingModel(tree)));
|
---|
68 | return null;
|
---|
69 | }
|
---|
70 |
|
---|
71 | public static IFunctionTree CreateModel(Dataset dataset, string targetVariable, IEnumerable<string> inputVariables, int start, int end) {
|
---|
72 | return CreateModel(dataset, targetVariable, inputVariables, start, end, 0, 0);
|
---|
73 | }
|
---|
74 |
|
---|
75 | public static IFunctionTree CreateModel(Dataset dataset, string targetVariable, IEnumerable<string> inputVariables,
|
---|
76 | int start, int end,
|
---|
77 | int minTimeOffset, int maxTimeOffset) {
|
---|
78 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
79 | List<int> allowedColumns = CalculateAllowedColumns(dataset, targetVariableIndex, inputVariables.Select(x => dataset.GetVariableIndex(x)), start, end);
|
---|
80 | List<int> allowedRows = CalculateAllowedRows(dataset, targetVariableIndex, allowedColumns, start, end, minTimeOffset, maxTimeOffset);
|
---|
81 |
|
---|
82 | double[,] inputMatrix = PrepareInputMatrix(dataset, allowedColumns, allowedRows, minTimeOffset, maxTimeOffset);
|
---|
83 | double[] targetVector = PrepareTargetVector(dataset, targetVariableIndex, allowedRows);
|
---|
84 | double[] coefficients = CalculateCoefficients(inputMatrix, targetVector);
|
---|
85 | return CreateModel(coefficients, allowedColumns.Select(i => dataset.GetVariableName(i)).ToList(), minTimeOffset, maxTimeOffset);
|
---|
86 | }
|
---|
87 |
|
---|
88 | private static IFunctionTree CreateModel(double[] coefficients, List<string> allowedVariables, int minTimeOffset, int maxTimeOffset) {
|
---|
89 | IFunctionTree root = new Addition().GetTreeNode();
|
---|
90 |
|
---|
91 | int timeOffsetRange = (maxTimeOffset - minTimeOffset + 1);
|
---|
92 |
|
---|
93 | for (int i = 0; i < allowedVariables.Count; i++) {
|
---|
94 | for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++) {
|
---|
95 | var vNode = (VariableFunctionTree)new GP.StructureIdentification.Variable().GetTreeNode();
|
---|
96 | vNode.VariableName = allowedVariables[i];
|
---|
97 | vNode.Weight = coefficients[(i * timeOffsetRange) + (timeOffset - minTimeOffset)];
|
---|
98 | vNode.SampleOffset = timeOffset;
|
---|
99 | root.AddSubTree(vNode);
|
---|
100 | }
|
---|
101 | }
|
---|
102 | var cNode = (ConstantFunctionTree)new Constant().GetTreeNode();
|
---|
103 |
|
---|
104 | cNode.Value = coefficients[coefficients.Length - 1];
|
---|
105 | root.AddSubTree(cNode);
|
---|
106 | return root;
|
---|
107 | }
|
---|
108 |
|
---|
109 | private static double[] CalculateCoefficients(double[,] inputMatrix, double[] targetVector) {
|
---|
110 | int retVal = 0;
|
---|
111 | alglib.linreg.linearmodel lm = new alglib.linreg.linearmodel();
|
---|
112 | alglib.linreg.lrreport ar = new alglib.linreg.lrreport();
|
---|
113 | int n = targetVector.Length;
|
---|
114 | int p = inputMatrix.GetLength(1);
|
---|
115 | // no features allowed -> return constant offset
|
---|
116 | if (p <= 1) return new double[] { Statistics.Mean(targetVector) };
|
---|
117 | double[,] dataset = new double[n, p];
|
---|
118 | for (int row = 0; row < n; row++) {
|
---|
119 | for (int column = 0; column < p - 1; column++) {
|
---|
120 | dataset[row, column] = inputMatrix[row, column];
|
---|
121 | }
|
---|
122 | dataset[row, p - 1] = targetVector[row];
|
---|
123 | }
|
---|
124 | alglib.linreg.lrbuild(ref dataset, n, p - 1, ref retVal, ref lm, ref ar);
|
---|
125 | if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression model");
|
---|
126 | Console.Out.WriteLine("ALGLIB Linear Regression: Estimated generalization RMS = {0}", ar.cvrmserror);
|
---|
127 |
|
---|
128 | double[] coefficients = new double[p];
|
---|
129 | for (int i = 0; i < p; i++) {
|
---|
130 | coefficients[i] = lm.w[i + 4];
|
---|
131 | }
|
---|
132 | return coefficients;
|
---|
133 | }
|
---|
134 |
|
---|
135 | //returns list of valid row indexes (rows without NaN values)
|
---|
136 | private static List<int> CalculateAllowedRows(Dataset dataset, int targetVariable, IList<int> allowedColumns, int start, int end, int minTimeOffset, int maxTimeOffset) {
|
---|
137 | List<int> allowedRows = new List<int>();
|
---|
138 | bool add;
|
---|
139 | for (int row = start; row < end; row++) {
|
---|
140 | add = true;
|
---|
141 | for (int colIndex = 0; colIndex < allowedColumns.Count && add == true; colIndex++) {
|
---|
142 | for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++) {
|
---|
143 | if (
|
---|
144 | row + timeOffset < 0 ||
|
---|
145 | row + timeOffset > dataset.Rows ||
|
---|
146 | double.IsNaN(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) ||
|
---|
147 | double.IsInfinity(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) ||
|
---|
148 | double.IsNaN(dataset.GetValue(row + timeOffset, targetVariable))) {
|
---|
149 | add = false;
|
---|
150 | }
|
---|
151 | }
|
---|
152 | }
|
---|
153 | if (add)
|
---|
154 | allowedRows.Add(row);
|
---|
155 | add = true;
|
---|
156 | }
|
---|
157 | return allowedRows;
|
---|
158 | }
|
---|
159 |
|
---|
160 | //returns list of valid column indexes (columns which contain max. 10% NaN (or infinity) and contain at least two different values)
|
---|
161 | private static List<int> CalculateAllowedColumns(Dataset dataset, int targetVariable, IEnumerable<int> inputVariables, int start, int end) {
|
---|
162 | List<int> allowedColumns = new List<int>();
|
---|
163 | double n = end - start;
|
---|
164 | foreach (int inputVariable in inputVariables) {// = 0; i < dataset.Columns; i++) {
|
---|
165 | double nanRatio = dataset.CountMissingValues(inputVariable, start, end) / n;
|
---|
166 | if (inputVariable != targetVariable && nanRatio < 0.1 && dataset.GetRange(inputVariable, start, end) > 0.0) {
|
---|
167 | allowedColumns.Add(inputVariable);
|
---|
168 | }
|
---|
169 | }
|
---|
170 | return allowedColumns;
|
---|
171 | }
|
---|
172 |
|
---|
173 | private static double[,] PrepareInputMatrix(Dataset dataset, List<int> allowedColumns, List<int> allowedRows, int minTimeOffset, int maxTimeOffset) {
|
---|
174 | int rowCount = allowedRows.Count;
|
---|
175 | int timeOffsetRange = (maxTimeOffset - minTimeOffset + 1);
|
---|
176 | double[,] matrix = new double[rowCount, (allowedColumns.Count * timeOffsetRange) + 1];
|
---|
177 | for (int row = 0; row < allowedRows.Count; row++)
|
---|
178 | for (int col = 0; col < allowedColumns.Count; col++) {
|
---|
179 | for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++)
|
---|
180 | matrix[row, (col * timeOffsetRange) + (timeOffset - minTimeOffset)] = dataset.GetValue(allowedRows[row] + timeOffset, allowedColumns[col]);
|
---|
181 | }
|
---|
182 | //add constant 1.0 in last column
|
---|
183 | for (int i = 0; i < rowCount; i++)
|
---|
184 | matrix[i, allowedColumns.Count * timeOffsetRange] = constant;
|
---|
185 | return matrix;
|
---|
186 | }
|
---|
187 |
|
---|
188 | private static double[] PrepareTargetVector(Dataset dataset, int targetVariable, List<int> allowedRows) {
|
---|
189 | int rowCount = allowedRows.Count;
|
---|
190 | double[] targetVector = new double[rowCount];
|
---|
191 | double[] samples = dataset.Samples;
|
---|
192 | for (int row = 0; row < rowCount; row++) {
|
---|
193 | targetVector[row] = dataset.GetValue(allowedRows[row], targetVariable);
|
---|
194 | }
|
---|
195 | return targetVector;
|
---|
196 | }
|
---|
197 | }
|
---|
198 | }
|
---|