[2154] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 | using System;
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
[2324] | 26 | using HeuristicLab.Common;
|
---|
[2154] | 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.DataAnalysis;
|
---|
[2226] | 29 | using HeuristicLab.Modeling;
|
---|
[2154] | 30 | using HeuristicLab.GP;
|
---|
| 31 | using HeuristicLab.GP.StructureIdentification;
|
---|
[2222] | 32 | using HeuristicLab.GP.Interfaces;
|
---|
[2154] | 33 |
|
---|
| 34 | namespace HeuristicLab.LinearRegression {
|
---|
| 35 | public class LinearRegressionOperator : OperatorBase {
|
---|
| 36 | private static double constant = 1.0;
|
---|
| 37 |
|
---|
| 38 | public LinearRegressionOperator() {
|
---|
[2789] | 39 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
[2440] | 40 | AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
|
---|
[2789] | 41 | AddVariableInfo(new VariableInfo("InputVariables", "List of allowed input variable names", typeof(ItemList), VariableKind.In));
|
---|
[2154] | 42 | AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
| 43 | AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
[2360] | 44 | AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) Maximal time offset for time-series prognosis", typeof(IntData), VariableKind.In));
|
---|
| 45 | AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) Minimal time offset for time-series prognosis", typeof(IntData), VariableKind.In));
|
---|
[2222] | 46 | AddVariableInfo(new VariableInfo("LinearRegressionModel", "Formula that was calculated by linear regression", typeof(IGeneticProgrammingModel), VariableKind.Out | VariableKind.New));
|
---|
[2154] | 47 | }
|
---|
| 48 |
|
---|
| 49 | public override IOperation Apply(IScope scope) {
|
---|
| 50 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
[2440] | 51 | string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
| 52 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
[2154] | 53 | int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
|
---|
| 54 | int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
|
---|
[2360] | 55 | IntData maxTimeOffsetData = GetVariableValue<IntData>("MaxTimeOffset", scope, true, false);
|
---|
| 56 | int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data;
|
---|
| 57 | IntData minTimeOffsetData = GetVariableValue<IntData>("MinTimeOffset", scope, true, false);
|
---|
| 58 | int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data;
|
---|
[2789] | 59 | ItemList inputVariables = GetVariableValue<ItemList>("InputVariables", scope, true, false);
|
---|
| 60 |
|
---|
| 61 | IFunctionTree tree;
|
---|
| 62 | if (inputVariables != null) {
|
---|
| 63 | tree = CreateModel(dataset, targetVariable, inputVariables.Cast<StringData>().Select(x => x.Data), start, end, minTimeOffset, maxTimeOffset);
|
---|
| 64 | } else {
|
---|
| 65 | tree = CreateModel(dataset, targetVariable, dataset.VariableNames, start, end, minTimeOffset, maxTimeOffset);
|
---|
| 66 | }
|
---|
[2542] | 67 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("LinearRegressionModel"), new GeneticProgrammingModel(tree)));
|
---|
| 68 | return null;
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | public static IFunctionTree CreateModel(Dataset dataset, string targetVariable, IEnumerable<string> inputVariables, int start, int end) {
|
---|
| 72 | return CreateModel(dataset, targetVariable, inputVariables, start, end, 0, 0);
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | public static IFunctionTree CreateModel(Dataset dataset, string targetVariable, IEnumerable<string> inputVariables,
|
---|
| 76 | int start, int end,
|
---|
| 77 | int minTimeOffset, int maxTimeOffset) {
|
---|
| 78 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
| 79 | List<int> allowedColumns = CalculateAllowedColumns(dataset, targetVariableIndex, inputVariables.Select(x => dataset.GetVariableIndex(x)), start, end);
|
---|
[2440] | 80 | List<int> allowedRows = CalculateAllowedRows(dataset, targetVariableIndex, allowedColumns, start, end, minTimeOffset, maxTimeOffset);
|
---|
[2154] | 81 |
|
---|
[2360] | 82 | double[,] inputMatrix = PrepareInputMatrix(dataset, allowedColumns, allowedRows, minTimeOffset, maxTimeOffset);
|
---|
[2440] | 83 | double[] targetVector = PrepareTargetVector(dataset, targetVariableIndex, allowedRows);
|
---|
[2154] | 84 | double[] coefficients = CalculateCoefficients(inputMatrix, targetVector);
|
---|
[2542] | 85 | return CreateModel(coefficients, allowedColumns.Select(i => dataset.GetVariableName(i)).ToList(), minTimeOffset, maxTimeOffset);
|
---|
[2154] | 86 | }
|
---|
| 87 |
|
---|
[2542] | 88 | private static IFunctionTree CreateModel(double[] coefficients, List<string> allowedVariables, int minTimeOffset, int maxTimeOffset) {
|
---|
[2154] | 89 | IFunctionTree root = new Addition().GetTreeNode();
|
---|
[2538] | 90 |
|
---|
[2360] | 91 | int timeOffsetRange = (maxTimeOffset - minTimeOffset + 1);
|
---|
[2154] | 92 |
|
---|
[2360] | 93 | for (int i = 0; i < allowedVariables.Count; i++) {
|
---|
| 94 | for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++) {
|
---|
| 95 | var vNode = (VariableFunctionTree)new GP.StructureIdentification.Variable().GetTreeNode();
|
---|
| 96 | vNode.VariableName = allowedVariables[i];
|
---|
| 97 | vNode.Weight = coefficients[(i * timeOffsetRange) + (timeOffset - minTimeOffset)];
|
---|
| 98 | vNode.SampleOffset = timeOffset;
|
---|
[2538] | 99 | root.AddSubTree(vNode);
|
---|
[2360] | 100 | }
|
---|
[2154] | 101 | }
|
---|
[2222] | 102 | var cNode = (ConstantFunctionTree)new Constant().GetTreeNode();
|
---|
[2154] | 103 |
|
---|
[2222] | 104 | cNode.Value = coefficients[coefficients.Length - 1];
|
---|
[2538] | 105 | root.AddSubTree(cNode);
|
---|
| 106 | return root;
|
---|
[2154] | 107 | }
|
---|
| 108 |
|
---|
[2542] | 109 | private static double[] CalculateCoefficients(double[,] inputMatrix, double[] targetVector) {
|
---|
[2445] | 110 | int retVal = 0;
|
---|
| 111 | alglib.linreg.linearmodel lm = new alglib.linreg.linearmodel();
|
---|
| 112 | alglib.linreg.lrreport ar = new alglib.linreg.lrreport();
|
---|
| 113 | int n = targetVector.Length;
|
---|
| 114 | int p = inputMatrix.GetLength(1);
|
---|
[2789] | 115 | // no features allowed -> return constant offset
|
---|
[2843] | 116 | if (p <= 1) return new double[] { Statistics.Mean(targetVector) };
|
---|
[2445] | 117 | double[,] dataset = new double[n, p];
|
---|
| 118 | for (int row = 0; row < n; row++) {
|
---|
[2538] | 119 | for (int column = 0; column < p - 1; column++) {
|
---|
[2445] | 120 | dataset[row, column] = inputMatrix[row, column];
|
---|
| 121 | }
|
---|
[2538] | 122 | dataset[row, p - 1] = targetVector[row];
|
---|
[2445] | 123 | }
|
---|
[2538] | 124 | alglib.linreg.lrbuild(ref dataset, n, p - 1, ref retVal, ref lm, ref ar);
|
---|
[2445] | 125 | if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression model");
|
---|
| 126 | Console.Out.WriteLine("ALGLIB Linear Regression: Estimated generalization RMS = {0}", ar.cvrmserror);
|
---|
[2154] | 127 |
|
---|
[2445] | 128 | double[] coefficients = new double[p];
|
---|
| 129 | for (int i = 0; i < p; i++) {
|
---|
[2538] | 130 | coefficients[i] = lm.w[i + 4];
|
---|
[2445] | 131 | }
|
---|
[2154] | 132 | return coefficients;
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | //returns list of valid row indexes (rows without NaN values)
|
---|
[2542] | 136 | private static List<int> CalculateAllowedRows(Dataset dataset, int targetVariable, IList<int> allowedColumns, int start, int end, int minTimeOffset, int maxTimeOffset) {
|
---|
[2154] | 137 | List<int> allowedRows = new List<int>();
|
---|
| 138 | bool add;
|
---|
| 139 | for (int row = start; row < end; row++) {
|
---|
| 140 | add = true;
|
---|
[2367] | 141 | for (int colIndex = 0; colIndex < allowedColumns.Count && add == true; colIndex++) {
|
---|
[2360] | 142 | for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++) {
|
---|
| 143 | if (
|
---|
| 144 | row + timeOffset < 0 ||
|
---|
| 145 | row + timeOffset > dataset.Rows ||
|
---|
[2367] | 146 | double.IsNaN(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) ||
|
---|
| 147 | double.IsInfinity(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) ||
|
---|
[2360] | 148 | double.IsNaN(dataset.GetValue(row + timeOffset, targetVariable))) {
|
---|
| 149 | add = false;
|
---|
| 150 | }
|
---|
| 151 | }
|
---|
[2154] | 152 | }
|
---|
| 153 | if (add)
|
---|
| 154 | allowedRows.Add(row);
|
---|
| 155 | add = true;
|
---|
| 156 | }
|
---|
| 157 | return allowedRows;
|
---|
| 158 | }
|
---|
| 159 |
|
---|
[2367] | 160 | //returns list of valid column indexes (columns which contain max. 10% NaN (or infinity) and contain at least two different values)
|
---|
[2542] | 161 | private static List<int> CalculateAllowedColumns(Dataset dataset, int targetVariable, IEnumerable<int> inputVariables, int start, int end) {
|
---|
[2165] | 162 | List<int> allowedColumns = new List<int>();
|
---|
[2367] | 163 | double n = end - start;
|
---|
[2542] | 164 | foreach (int inputVariable in inputVariables) {// = 0; i < dataset.Columns; i++) {
|
---|
| 165 | double nanRatio = dataset.CountMissingValues(inputVariable, start, end) / n;
|
---|
| 166 | if (inputVariable != targetVariable && nanRatio < 0.1 && dataset.GetRange(inputVariable, start, end) > 0.0) {
|
---|
| 167 | allowedColumns.Add(inputVariable);
|
---|
[2367] | 168 | }
|
---|
[2165] | 169 | }
|
---|
| 170 | return allowedColumns;
|
---|
| 171 | }
|
---|
| 172 |
|
---|
[2542] | 173 | private static double[,] PrepareInputMatrix(Dataset dataset, List<int> allowedColumns, List<int> allowedRows, int minTimeOffset, int maxTimeOffset) {
|
---|
[2154] | 174 | int rowCount = allowedRows.Count;
|
---|
[2360] | 175 | int timeOffsetRange = (maxTimeOffset - minTimeOffset + 1);
|
---|
| 176 | double[,] matrix = new double[rowCount, (allowedColumns.Count * timeOffsetRange) + 1];
|
---|
| 177 | for (int row = 0; row < allowedRows.Count; row++)
|
---|
| 178 | for (int col = 0; col < allowedColumns.Count; col++) {
|
---|
| 179 | for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++)
|
---|
| 180 | matrix[row, (col * timeOffsetRange) + (timeOffset - minTimeOffset)] = dataset.GetValue(allowedRows[row] + timeOffset, allowedColumns[col]);
|
---|
| 181 | }
|
---|
[2154] | 182 | //add constant 1.0 in last column
|
---|
| 183 | for (int i = 0; i < rowCount; i++)
|
---|
[2360] | 184 | matrix[i, allowedColumns.Count * timeOffsetRange] = constant;
|
---|
[2154] | 185 | return matrix;
|
---|
| 186 | }
|
---|
| 187 |
|
---|
[2542] | 188 | private static double[] PrepareTargetVector(Dataset dataset, int targetVariable, List<int> allowedRows) {
|
---|
[2154] | 189 | int rowCount = allowedRows.Count;
|
---|
| 190 | double[] targetVector = new double[rowCount];
|
---|
| 191 | double[] samples = dataset.Samples;
|
---|
| 192 | for (int row = 0; row < rowCount; row++) {
|
---|
| 193 | targetVector[row] = dataset.GetValue(allowedRows[row], targetVariable);
|
---|
| 194 | }
|
---|
| 195 | return targetVector;
|
---|
| 196 | }
|
---|
| 197 | }
|
---|
| 198 | }
|
---|