[2154] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 | using System;
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.DataAnalysis;
|
---|
[2226] | 28 | using HeuristicLab.Modeling;
|
---|
[2154] | 29 | using HeuristicLab.GP;
|
---|
| 30 | using HeuristicLab.GP.StructureIdentification;
|
---|
[2222] | 31 | using HeuristicLab.GP.Interfaces;
|
---|
[2154] | 32 |
|
---|
| 33 | namespace HeuristicLab.LinearRegression {
|
---|
| 34 | public class LinearRegressionOperator : OperatorBase {
|
---|
| 35 | private static double constant = 1.0;
|
---|
| 36 |
|
---|
| 37 | public LinearRegressionOperator() {
|
---|
| 38 | AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
|
---|
| 39 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
| 40 | AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
| 41 | AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
[2222] | 42 | AddVariableInfo(new VariableInfo("LinearRegressionModel", "Formula that was calculated by linear regression", typeof(IGeneticProgrammingModel), VariableKind.Out | VariableKind.New));
|
---|
[2154] | 43 | }
|
---|
| 44 |
|
---|
| 45 | public override IOperation Apply(IScope scope) {
|
---|
| 46 | int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
|
---|
| 47 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
| 48 | int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
|
---|
| 49 | int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
|
---|
[2165] | 50 | List<int> allowedRows = CalculateAllowedRows(dataset, targetVariable, start, end);
|
---|
| 51 | List<int> allowedColumns = CalculateAllowedColumns(dataset, targetVariable, start, end);
|
---|
[2154] | 52 |
|
---|
[2165] | 53 | double[,] inputMatrix = PrepareInputMatrix(dataset, allowedColumns, allowedRows);
|
---|
[2154] | 54 | double[] targetVector = PrepareTargetVector(dataset, targetVariable, allowedRows);
|
---|
| 55 | double[] coefficients = CalculateCoefficients(inputMatrix, targetVector);
|
---|
[2222] | 56 | IFunctionTree tree = CreateModel(coefficients, allowedColumns.Select(i => dataset.GetVariableName(i)).ToList());
|
---|
[2226] | 57 |
|
---|
[2222] | 58 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("LinearRegressionModel"), new GeneticProgrammingModel(tree)));
|
---|
[2154] | 59 | return null;
|
---|
| 60 | }
|
---|
| 61 |
|
---|
[2222] | 62 | private IFunctionTree CreateModel(double[] coefficients, List<string> allowedVariables) {
|
---|
[2154] | 63 | IFunctionTree root = new Addition().GetTreeNode();
|
---|
| 64 | IFunctionTree actNode = root;
|
---|
| 65 |
|
---|
| 66 | Queue<IFunctionTree> nodes = new Queue<IFunctionTree>();
|
---|
| 67 | GP.StructureIdentification.Variable v;
|
---|
| 68 | for (int i = 0; i < coefficients.Length - 1; i++) {
|
---|
[2222] | 69 | var vNode = (VariableFunctionTree)new GP.StructureIdentification.Variable().GetTreeNode();
|
---|
| 70 | vNode.VariableName = allowedVariables[i];
|
---|
| 71 | vNode.Weight = coefficients[i];
|
---|
| 72 | vNode.SampleOffset = 0;
|
---|
| 73 | nodes.Enqueue(vNode);
|
---|
[2154] | 74 | }
|
---|
[2222] | 75 | var cNode = (ConstantFunctionTree)new Constant().GetTreeNode();
|
---|
[2154] | 76 |
|
---|
[2222] | 77 | cNode.Value = coefficients[coefficients.Length - 1];
|
---|
| 78 | nodes.Enqueue(cNode);
|
---|
| 79 |
|
---|
[2154] | 80 | IFunctionTree newTree;
|
---|
| 81 | while (nodes.Count != 1) {
|
---|
| 82 | newTree = new Addition().GetTreeNode();
|
---|
| 83 | newTree.AddSubTree(nodes.Dequeue());
|
---|
| 84 | newTree.AddSubTree(nodes.Dequeue());
|
---|
| 85 | nodes.Enqueue(newTree);
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | return nodes.Dequeue();
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | private double[] CalculateCoefficients(double[,] inputMatrix, double[] targetVector) {
|
---|
| 92 | double[] weights = new double[targetVector.Length];
|
---|
| 93 | double[] coefficients = new double[inputMatrix.GetLength(1)];
|
---|
[2165] | 94 | for (int i = 0; i < weights.Length; i++) weights[i] = 1.0;
|
---|
[2154] | 95 | // call external ALGLIB solver
|
---|
| 96 | leastsquares.buildgeneralleastsquares(ref targetVector, ref weights, ref inputMatrix, inputMatrix.GetLength(0), inputMatrix.GetLength(1), ref coefficients);
|
---|
| 97 |
|
---|
| 98 | return coefficients;
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | //returns list of valid row indexes (rows without NaN values)
|
---|
[2165] | 102 | private List<int> CalculateAllowedRows(Dataset dataset, int targetVariable, int start, int end) {
|
---|
[2154] | 103 | List<int> allowedRows = new List<int>();
|
---|
| 104 | bool add;
|
---|
| 105 | for (int row = start; row < end; row++) {
|
---|
| 106 | add = true;
|
---|
[2165] | 107 | for (int col = 0; col < dataset.Columns && add == true; col++) {
|
---|
| 108 | if (double.IsNaN(dataset.GetValue(row, col)) ||
|
---|
[2154] | 109 | double.IsNaN(dataset.GetValue(row, targetVariable)))
|
---|
| 110 | add = false;
|
---|
| 111 | }
|
---|
| 112 | if (add)
|
---|
| 113 | allowedRows.Add(row);
|
---|
| 114 | add = true;
|
---|
| 115 | }
|
---|
| 116 | return allowedRows;
|
---|
| 117 | }
|
---|
| 118 |
|
---|
[2165] | 119 | //returns list of valid column indexes (columns which contain at least one non-zero value)
|
---|
| 120 | private List<int> CalculateAllowedColumns(Dataset dataset, int targetVariable, int start, int end) {
|
---|
| 121 | List<int> allowedColumns = new List<int>();
|
---|
| 122 | for (int i = 0; i < dataset.Columns; i++) {
|
---|
| 123 | if (i == targetVariable) continue;
|
---|
[2226] | 124 | if (!dataset.GetMinimum(i, start, end).IsAlmost(0.0) ||
|
---|
| 125 | !dataset.GetMaximum(i, start, end).IsAlmost(0.0))
|
---|
[2165] | 126 | allowedColumns.Add(i);
|
---|
| 127 | }
|
---|
| 128 | return allowedColumns;
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | private double[,] PrepareInputMatrix(Dataset dataset, List<int> allowedColumns, List<int> allowedRows) {
|
---|
[2154] | 132 | int rowCount = allowedRows.Count;
|
---|
[2165] | 133 | double[,] matrix = new double[rowCount, allowedColumns.Count + 1];
|
---|
| 134 | for (int col = 0; col < allowedColumns.Count; col++) {
|
---|
[2154] | 135 | for (int row = 0; row < allowedRows.Count; row++)
|
---|
[2165] | 136 | matrix[row, col] = dataset.GetValue(allowedRows[row], allowedColumns[col]);
|
---|
[2154] | 137 | }
|
---|
| 138 | //add constant 1.0 in last column
|
---|
| 139 | for (int i = 0; i < rowCount; i++)
|
---|
[2165] | 140 | matrix[i, allowedColumns.Count] = constant;
|
---|
[2154] | 141 | return matrix;
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | private double[] PrepareTargetVector(Dataset dataset, int targetVariable, List<int> allowedRows) {
|
---|
| 145 | int rowCount = allowedRows.Count;
|
---|
| 146 | double[] targetVector = new double[rowCount];
|
---|
| 147 | double[] samples = dataset.Samples;
|
---|
| 148 | for (int row = 0; row < rowCount; row++) {
|
---|
| 149 | targetVector[row] = dataset.GetValue(allowedRows[row], targetVariable);
|
---|
| 150 | }
|
---|
| 151 | return targetVector;
|
---|
| 152 | }
|
---|
| 153 | }
|
---|
| 154 | }
|
---|