1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using System.Xml;
|
---|
28 | using System.Diagnostics;
|
---|
29 | using HeuristicLab.DataAnalysis;
|
---|
30 | using HeuristicLab.Data;
|
---|
31 | using HeuristicLab.Operators;
|
---|
32 | using HeuristicLab.GP.StructureIdentification;
|
---|
33 | using HeuristicLab.Modeling;
|
---|
34 | using HeuristicLab.GP;
|
---|
35 | using HeuristicLab.Random;
|
---|
36 | using HeuristicLab.GP.Interfaces;
|
---|
37 |
|
---|
38 | namespace HeuristicLab.LinearRegression {
|
---|
39 | public class LinearRegression : ItemBase, IEditable, IAlgorithm {
|
---|
40 |
|
---|
41 | public string Name { get { return "LinearRegression"; } }
|
---|
42 | public string Description { get { return "TODO"; } }
|
---|
43 |
|
---|
44 | private SequentialEngine.SequentialEngine engine;
|
---|
45 | public IEngine Engine {
|
---|
46 | get { return engine; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public Dataset Dataset {
|
---|
50 | get { return ProblemInjector.GetVariableValue<Dataset>("Dataset", null, false); }
|
---|
51 | set { ProblemInjector.GetVariable("Dataset").Value = value; }
|
---|
52 | }
|
---|
53 |
|
---|
54 | public int TargetVariable {
|
---|
55 | get { return ProblemInjector.GetVariableValue<IntData>("TargetVariable", null, false).Data; }
|
---|
56 | set { ProblemInjector.GetVariableValue<IntData>("TargetVariable", null, false).Data = value; }
|
---|
57 | }
|
---|
58 |
|
---|
59 | public IOperator ProblemInjector {
|
---|
60 | get {
|
---|
61 | IOperator main = GetMainOperator();
|
---|
62 | return main.SubOperators[1];
|
---|
63 | }
|
---|
64 | set {
|
---|
65 | IOperator main = GetMainOperator();
|
---|
66 | main.RemoveSubOperator(1);
|
---|
67 | main.AddSubOperator(value, 1);
|
---|
68 | }
|
---|
69 | }
|
---|
70 |
|
---|
71 | public IModel Model {
|
---|
72 | get {
|
---|
73 | if (!engine.Terminated) throw new InvalidOperationException("The algorithm is still running. Wait until the algorithm is terminated to retrieve the result.");
|
---|
74 | IScope bestModelScope = engine.GlobalScope;
|
---|
75 | return CreateLRModel(bestModelScope);
|
---|
76 | }
|
---|
77 | }
|
---|
78 |
|
---|
79 | public LinearRegression() {
|
---|
80 | engine = new SequentialEngine.SequentialEngine();
|
---|
81 | CombinedOperator algo = CreateAlgorithm();
|
---|
82 | engine.OperatorGraph.AddOperator(algo);
|
---|
83 | engine.OperatorGraph.InitialOperator = algo;
|
---|
84 | }
|
---|
85 |
|
---|
86 | private CombinedOperator CreateAlgorithm() {
|
---|
87 | CombinedOperator algo = new CombinedOperator();
|
---|
88 | SequentialProcessor seq = new SequentialProcessor();
|
---|
89 | algo.Name = "LinearRegression";
|
---|
90 | seq.Name = "LinearRegression";
|
---|
91 |
|
---|
92 | var randomInjector = new RandomInjector();
|
---|
93 | randomInjector.Name = "Random Injector";
|
---|
94 | IOperator globalInjector = CreateGlobalInjector();
|
---|
95 | ProblemInjector problemInjector = new ProblemInjector();
|
---|
96 | problemInjector.GetVariableInfo("MaxNumberOfTrainingSamples").Local = true;
|
---|
97 | problemInjector.AddVariable(new HeuristicLab.Core.Variable("MaxNumberOfTrainingSamples", new IntData(5000)));
|
---|
98 |
|
---|
99 | IOperator shuffler = new DatasetShuffler();
|
---|
100 | shuffler.GetVariableInfo("ShuffleStart").ActualName = "TrainingSamplesStart";
|
---|
101 | shuffler.GetVariableInfo("ShuffleEnd").ActualName = "TrainingSamplesEnd";
|
---|
102 |
|
---|
103 | LinearRegressionOperator lrOperator = new LinearRegressionOperator();
|
---|
104 | lrOperator.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
105 | lrOperator.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
106 |
|
---|
107 | seq.AddSubOperator(randomInjector);
|
---|
108 | seq.AddSubOperator(problemInjector);
|
---|
109 | seq.AddSubOperator(globalInjector);
|
---|
110 | seq.AddSubOperator(shuffler);
|
---|
111 | seq.AddSubOperator(lrOperator);
|
---|
112 | seq.AddSubOperator(CreateModelAnalyser());
|
---|
113 |
|
---|
114 | algo.OperatorGraph.InitialOperator = seq;
|
---|
115 | algo.OperatorGraph.AddOperator(seq);
|
---|
116 |
|
---|
117 | return algo;
|
---|
118 | }
|
---|
119 |
|
---|
120 | private IOperator CreateGlobalInjector() {
|
---|
121 | VariableInjector injector = new VariableInjector();
|
---|
122 | injector.AddVariable(new HeuristicLab.Core.Variable("PunishmentFactor", new DoubleData(10)));
|
---|
123 | injector.AddVariable(new HeuristicLab.Core.Variable("TotalEvaluatedNodes", new DoubleData(0)));
|
---|
124 | injector.AddVariable(new HeuristicLab.Core.Variable("TreeEvaluator", new HL2TreeEvaluator()));
|
---|
125 | injector.AddVariable(new HeuristicLab.Core.Variable("UseEstimatedTargetValue", new BoolData(false)));
|
---|
126 |
|
---|
127 | return injector;
|
---|
128 | }
|
---|
129 |
|
---|
130 | private IOperator CreateModelAnalyser() {
|
---|
131 | CombinedOperator modelAnalyser = new CombinedOperator();
|
---|
132 | modelAnalyser.Name = "Model Analyzer";
|
---|
133 | SequentialProcessor seqProc = new SequentialProcessor();
|
---|
134 | #region MSE
|
---|
135 | MeanSquaredErrorEvaluator trainingMSE = new MeanSquaredErrorEvaluator();
|
---|
136 | trainingMSE.Name = "TrainingMseEvaluator";
|
---|
137 | trainingMSE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
138 | trainingMSE.GetVariableInfo("MSE").ActualName = "TrainingQuality";
|
---|
139 | trainingMSE.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
140 | trainingMSE.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
141 | MeanSquaredErrorEvaluator validationMSE = new MeanSquaredErrorEvaluator();
|
---|
142 | validationMSE.Name = "ValidationMseEvaluator";
|
---|
143 | validationMSE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
144 | validationMSE.GetVariableInfo("MSE").ActualName = "ValidationQuality";
|
---|
145 | validationMSE.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
|
---|
146 | validationMSE.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
|
---|
147 | MeanSquaredErrorEvaluator testMSE = new MeanSquaredErrorEvaluator();
|
---|
148 | testMSE.Name = "TestMseEvaluator";
|
---|
149 | testMSE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
150 | testMSE.GetVariableInfo("MSE").ActualName = "TestQuality";
|
---|
151 | testMSE.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
|
---|
152 | testMSE.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
|
---|
153 | #endregion
|
---|
154 |
|
---|
155 | #region R2
|
---|
156 | CoefficientOfDeterminationEvaluator trainingR2 = new CoefficientOfDeterminationEvaluator();
|
---|
157 | trainingR2.Name = "TrainingR2Evaluator";
|
---|
158 | trainingR2.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
159 | trainingR2.GetVariableInfo("R2").ActualName = "TrainingR2";
|
---|
160 | trainingR2.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
161 | trainingR2.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
162 | CoefficientOfDeterminationEvaluator validationR2 = new CoefficientOfDeterminationEvaluator();
|
---|
163 | validationR2.Name = "ValidationR2Evaluator";
|
---|
164 | validationR2.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
165 | validationR2.GetVariableInfo("R2").ActualName = "ValidationR2";
|
---|
166 | validationR2.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
|
---|
167 | validationR2.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
|
---|
168 | CoefficientOfDeterminationEvaluator testR2 = new CoefficientOfDeterminationEvaluator();
|
---|
169 | testR2.Name = "TestR2Evaluator";
|
---|
170 | testR2.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
171 | testR2.GetVariableInfo("R2").ActualName = "TestR2";
|
---|
172 | testR2.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
|
---|
173 | testR2.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
|
---|
174 | #endregion
|
---|
175 |
|
---|
176 | #region MAPE
|
---|
177 | MeanAbsolutePercentageErrorEvaluator trainingMAPE = new MeanAbsolutePercentageErrorEvaluator();
|
---|
178 | trainingMAPE.Name = "TrainingMapeEvaluator";
|
---|
179 | trainingMAPE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
180 | trainingMAPE.GetVariableInfo("MAPE").ActualName = "TrainingMAPE";
|
---|
181 | trainingMAPE.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
182 | trainingMAPE.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
183 | MeanAbsolutePercentageErrorEvaluator validationMAPE = new MeanAbsolutePercentageErrorEvaluator();
|
---|
184 | validationMAPE.Name = "ValidationMapeEvaluator";
|
---|
185 | validationMAPE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
186 | validationMAPE.GetVariableInfo("MAPE").ActualName = "ValidationMAPE";
|
---|
187 | validationMAPE.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
|
---|
188 | validationMAPE.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
|
---|
189 | MeanAbsolutePercentageErrorEvaluator testMAPE = new MeanAbsolutePercentageErrorEvaluator();
|
---|
190 | testMAPE.Name = "TestMapeEvaluator";
|
---|
191 | testMAPE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
192 | testMAPE.GetVariableInfo("MAPE").ActualName = "TestMAPE";
|
---|
193 | testMAPE.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
|
---|
194 | testMAPE.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
|
---|
195 | #endregion
|
---|
196 |
|
---|
197 | #region MAPRE
|
---|
198 | MeanAbsolutePercentageOfRangeErrorEvaluator trainingMAPRE = new MeanAbsolutePercentageOfRangeErrorEvaluator();
|
---|
199 | trainingMAPRE.Name = "TrainingMapreEvaluator";
|
---|
200 | trainingMAPRE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
201 | trainingMAPRE.GetVariableInfo("MAPRE").ActualName = "TrainingMAPRE";
|
---|
202 | trainingMAPRE.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
203 | trainingMAPRE.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
204 | MeanAbsolutePercentageOfRangeErrorEvaluator validationMAPRE = new MeanAbsolutePercentageOfRangeErrorEvaluator();
|
---|
205 | validationMAPRE.Name = "ValidationMapreEvaluator";
|
---|
206 | validationMAPRE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
207 | validationMAPRE.GetVariableInfo("MAPRE").ActualName = "ValidationMAPRE";
|
---|
208 | validationMAPRE.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
|
---|
209 | validationMAPRE.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
|
---|
210 | MeanAbsolutePercentageOfRangeErrorEvaluator testMAPRE = new MeanAbsolutePercentageOfRangeErrorEvaluator();
|
---|
211 | testMAPRE.Name = "TestMapreEvaluator";
|
---|
212 | testMAPRE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
213 | testMAPRE.GetVariableInfo("MAPRE").ActualName = "TestMAPRE";
|
---|
214 | testMAPRE.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
|
---|
215 | testMAPRE.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
|
---|
216 | #endregion
|
---|
217 |
|
---|
218 | #region VAF
|
---|
219 | VarianceAccountedForEvaluator trainingVAF = new VarianceAccountedForEvaluator();
|
---|
220 | trainingVAF.Name = "TrainingVafEvaluator";
|
---|
221 | trainingVAF.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
222 | trainingVAF.GetVariableInfo("VAF").ActualName = "TrainingVAF";
|
---|
223 | trainingVAF.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
224 | trainingVAF.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
225 | VarianceAccountedForEvaluator validationVAF = new VarianceAccountedForEvaluator();
|
---|
226 | validationVAF.Name = "ValidationVafEvaluator";
|
---|
227 | validationVAF.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
228 | validationVAF.GetVariableInfo("VAF").ActualName = "ValidationVAF";
|
---|
229 | validationVAF.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
|
---|
230 | validationVAF.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
|
---|
231 | VarianceAccountedForEvaluator testVAF = new VarianceAccountedForEvaluator();
|
---|
232 | testVAF.Name = "TestVafEvaluator";
|
---|
233 | testVAF.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
234 | testVAF.GetVariableInfo("VAF").ActualName = "TestVAF";
|
---|
235 | testVAF.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
|
---|
236 | testVAF.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
|
---|
237 | #endregion
|
---|
238 |
|
---|
239 | HeuristicLab.GP.StructureIdentification.VariableEvaluationImpactCalculator evalImpactCalc = new HeuristicLab.GP.StructureIdentification.VariableEvaluationImpactCalculator();
|
---|
240 | evalImpactCalc.GetVariableInfo("TrainingSamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
241 | evalImpactCalc.GetVariableInfo("TrainingSamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
242 | evalImpactCalc.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
243 | HeuristicLab.Modeling.VariableQualityImpactCalculator qualImpactCalc = new HeuristicLab.GP.StructureIdentification.VariableQualityImpactCalculator();
|
---|
244 | qualImpactCalc.GetVariableInfo("TrainingSamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
245 | qualImpactCalc.GetVariableInfo("TrainingSamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
246 | qualImpactCalc.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
247 | seqProc.AddSubOperator(trainingMSE);
|
---|
248 | seqProc.AddSubOperator(validationMSE);
|
---|
249 | seqProc.AddSubOperator(testMSE);
|
---|
250 | seqProc.AddSubOperator(trainingR2);
|
---|
251 | seqProc.AddSubOperator(validationR2);
|
---|
252 | seqProc.AddSubOperator(testR2);
|
---|
253 | seqProc.AddSubOperator(trainingMAPE);
|
---|
254 | seqProc.AddSubOperator(validationMAPE);
|
---|
255 | seqProc.AddSubOperator(testMAPE);
|
---|
256 | seqProc.AddSubOperator(trainingMAPRE);
|
---|
257 | seqProc.AddSubOperator(validationMAPRE);
|
---|
258 | seqProc.AddSubOperator(testMAPRE);
|
---|
259 | seqProc.AddSubOperator(trainingVAF);
|
---|
260 | seqProc.AddSubOperator(validationVAF);
|
---|
261 | seqProc.AddSubOperator(testVAF);
|
---|
262 | seqProc.AddSubOperator(qualImpactCalc);
|
---|
263 | seqProc.AddSubOperator(evalImpactCalc);
|
---|
264 | modelAnalyser.OperatorGraph.InitialOperator = seqProc;
|
---|
265 | modelAnalyser.OperatorGraph.AddOperator(seqProc);
|
---|
266 | return modelAnalyser;
|
---|
267 | }
|
---|
268 |
|
---|
269 |
|
---|
270 | protected internal virtual Model CreateLRModel(IScope bestModelScope) {
|
---|
271 | Model model = new Model();
|
---|
272 | model.TrainingMeanSquaredError = bestModelScope.GetVariableValue<DoubleData>("TrainingQuality", false).Data;
|
---|
273 | model.ValidationMeanSquaredError = bestModelScope.GetVariableValue<DoubleData>("ValidationQuality", false).Data;
|
---|
274 | model.TestMeanSquaredError = bestModelScope.GetVariableValue<DoubleData>("TestQuality", false).Data;
|
---|
275 | model.TrainingCoefficientOfDetermination = bestModelScope.GetVariableValue<DoubleData>("TrainingR2", false).Data;
|
---|
276 | model.ValidationCoefficientOfDetermination = bestModelScope.GetVariableValue<DoubleData>("ValidationR2", false).Data;
|
---|
277 | model.TestCoefficientOfDetermination = bestModelScope.GetVariableValue<DoubleData>("TestR2", false).Data;
|
---|
278 | model.TrainingMeanAbsolutePercentageError = bestModelScope.GetVariableValue<DoubleData>("TrainingMAPE", false).Data;
|
---|
279 | model.ValidationMeanAbsolutePercentageError = bestModelScope.GetVariableValue<DoubleData>("ValidationMAPE", false).Data;
|
---|
280 | model.TestMeanAbsolutePercentageError = bestModelScope.GetVariableValue<DoubleData>("TestMAPE", false).Data;
|
---|
281 | model.TrainingMeanAbsolutePercentageOfRangeError = bestModelScope.GetVariableValue<DoubleData>("TrainingMAPRE", false).Data;
|
---|
282 | model.ValidationMeanAbsolutePercentageOfRangeError = bestModelScope.GetVariableValue<DoubleData>("ValidationMAPRE", false).Data;
|
---|
283 | model.TestMeanAbsolutePercentageOfRangeError = bestModelScope.GetVariableValue<DoubleData>("TestMAPRE", false).Data;
|
---|
284 | model.TrainingVarianceAccountedFor = bestModelScope.GetVariableValue<DoubleData>("TrainingVAF", false).Data;
|
---|
285 | model.ValidationVarianceAccountedFor = bestModelScope.GetVariableValue<DoubleData>("ValidationVAF", false).Data;
|
---|
286 | model.TestVarianceAccountedFor = bestModelScope.GetVariableValue<DoubleData>("TestVAF", false).Data;
|
---|
287 |
|
---|
288 | model.Data = bestModelScope.GetVariableValue<IGeneticProgrammingModel>("LinearRegressionModel", false);
|
---|
289 | HeuristicLab.DataAnalysis.Dataset ds = bestModelScope.GetVariableValue<Dataset>("Dataset", true);
|
---|
290 | model.Dataset = ds;
|
---|
291 | model.TargetVariable = ds.GetVariableName(bestModelScope.GetVariableValue<IntData>("TargetVariable", true).Data);
|
---|
292 |
|
---|
293 | ItemList evaluationImpacts = bestModelScope.GetVariableValue<ItemList>("VariableEvaluationImpacts", false);
|
---|
294 | ItemList qualityImpacts = bestModelScope.GetVariableValue<ItemList>("VariableQualityImpacts", false);
|
---|
295 | foreach (ItemList row in evaluationImpacts) {
|
---|
296 | string variableName = ((StringData)row[0]).Data;
|
---|
297 | double impact = ((DoubleData)row[1]).Data;
|
---|
298 | model.SetVariableEvaluationImpact(variableName, impact);
|
---|
299 | model.AddInputVariables(variableName);
|
---|
300 | }
|
---|
301 | foreach (ItemList row in qualityImpacts) {
|
---|
302 | string variableName = ((StringData)row[0]).Data;
|
---|
303 | double impact = ((DoubleData)row[1]).Data;
|
---|
304 | model.SetVariableQualityImpact(variableName, impact);
|
---|
305 | model.AddInputVariables(variableName);
|
---|
306 | }
|
---|
307 |
|
---|
308 | return model;
|
---|
309 | }
|
---|
310 |
|
---|
311 | private IOperator GetMainOperator() {
|
---|
312 | CombinedOperator lr = (CombinedOperator)Engine.OperatorGraph.InitialOperator;
|
---|
313 | return lr.OperatorGraph.InitialOperator;
|
---|
314 | }
|
---|
315 |
|
---|
316 | public override IView CreateView() {
|
---|
317 | return engine.CreateView();
|
---|
318 | }
|
---|
319 |
|
---|
320 | #region IEditable Members
|
---|
321 |
|
---|
322 | public IEditor CreateEditor() {
|
---|
323 | return engine.CreateEditor();
|
---|
324 | }
|
---|
325 |
|
---|
326 | #endregion
|
---|
327 | }
|
---|
328 | }
|
---|