[2154] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using System.Xml;
|
---|
| 28 | using System.Diagnostics;
|
---|
| 29 | using HeuristicLab.DataAnalysis;
|
---|
| 30 | using HeuristicLab.Data;
|
---|
| 31 | using HeuristicLab.Operators;
|
---|
| 32 | using HeuristicLab.GP.StructureIdentification;
|
---|
| 33 | using HeuristicLab.Modeling;
|
---|
| 34 | using HeuristicLab.GP;
|
---|
[2161] | 35 | using HeuristicLab.Random;
|
---|
[2154] | 36 |
|
---|
| 37 | namespace HeuristicLab.LinearRegression {
|
---|
| 38 | public class LinearRegression : ItemBase, IEditable, IAlgorithm {
|
---|
| 39 |
|
---|
| 40 | public string Name { get { return "LinearRegression"; } }
|
---|
| 41 | public string Description { get { return "TODO"; } }
|
---|
| 42 |
|
---|
| 43 | private SequentialEngine.SequentialEngine engine;
|
---|
| 44 | public IEngine Engine {
|
---|
| 45 | get { return engine; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public Dataset Dataset {
|
---|
| 49 | get { return ProblemInjector.GetVariableValue<Dataset>("Dataset", null, false); }
|
---|
| 50 | set { ProblemInjector.GetVariable("Dataset").Value = value; }
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | public int TargetVariable {
|
---|
| 54 | get { return ProblemInjector.GetVariableValue<IntData>("TargetVariable", null, false).Data; }
|
---|
| 55 | set { ProblemInjector.GetVariableValue<IntData>("TargetVariable", null, false).Data = value; }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public IOperator ProblemInjector {
|
---|
| 59 | get {
|
---|
| 60 | IOperator main = GetMainOperator();
|
---|
| 61 | return main.SubOperators[1];
|
---|
| 62 | }
|
---|
| 63 | set {
|
---|
| 64 | IOperator main = GetMainOperator();
|
---|
| 65 | main.RemoveSubOperator(1);
|
---|
| 66 | main.AddSubOperator(value, 1);
|
---|
| 67 | }
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | public IModel Model {
|
---|
| 71 | get {
|
---|
| 72 | if (!engine.Terminated) throw new InvalidOperationException("The algorithm is still running. Wait until the algorithm is terminated to retrieve the result.");
|
---|
| 73 | IScope bestModelScope = engine.GlobalScope;
|
---|
| 74 | return CreateLRModel(bestModelScope);
|
---|
| 75 | }
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | public LinearRegression() {
|
---|
| 79 | engine = new SequentialEngine.SequentialEngine();
|
---|
| 80 | CombinedOperator algo = CreateAlgorithm();
|
---|
| 81 | engine.OperatorGraph.AddOperator(algo);
|
---|
| 82 | engine.OperatorGraph.InitialOperator = algo;
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | private CombinedOperator CreateAlgorithm() {
|
---|
| 86 | CombinedOperator algo = new CombinedOperator();
|
---|
| 87 | SequentialProcessor seq = new SequentialProcessor();
|
---|
| 88 | algo.Name = "LinearRegression";
|
---|
| 89 | seq.Name = "LinearRegression";
|
---|
| 90 |
|
---|
[2161] | 91 | var randomInjector = new RandomInjector();
|
---|
| 92 | randomInjector.Name = "Random Injector";
|
---|
[2154] | 93 | IOperator globalInjector = CreateGlobalInjector();
|
---|
| 94 | ProblemInjector problemInjector = new ProblemInjector();
|
---|
[2161] | 95 | problemInjector.GetVariableInfo("MaxNumberOfTrainingSamples").Local = true;
|
---|
| 96 | problemInjector.AddVariable(new HeuristicLab.Core.Variable("MaxNumberOfTrainingSamples", new IntData(5000)));
|
---|
| 97 |
|
---|
| 98 | IOperator shuffler = new DatasetShuffler();
|
---|
| 99 | shuffler.GetVariableInfo("ShuffleStart").ActualName = "TrainingSamplesStart";
|
---|
| 100 | shuffler.GetVariableInfo("ShuffleEnd").ActualName = "TrainingSamplesEnd";
|
---|
| 101 |
|
---|
[2154] | 102 | LinearRegressionOperator lrOperator = new LinearRegressionOperator();
|
---|
[2161] | 103 | lrOperator.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
| 104 | lrOperator.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
[2154] | 105 |
|
---|
[2161] | 106 | seq.AddSubOperator(randomInjector);
|
---|
[2164] | 107 | seq.AddSubOperator(problemInjector);
|
---|
[2154] | 108 | seq.AddSubOperator(globalInjector);
|
---|
[2161] | 109 | seq.AddSubOperator(shuffler);
|
---|
[2154] | 110 | seq.AddSubOperator(lrOperator);
|
---|
| 111 | seq.AddSubOperator(CreateModelAnalyser());
|
---|
| 112 |
|
---|
| 113 | algo.OperatorGraph.InitialOperator = seq;
|
---|
| 114 | algo.OperatorGraph.AddOperator(seq);
|
---|
| 115 |
|
---|
| 116 | return algo;
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | private IOperator CreateGlobalInjector() {
|
---|
| 120 | VariableInjector injector = new VariableInjector();
|
---|
| 121 | injector.AddVariable(new HeuristicLab.Core.Variable("PunishmentFactor", new DoubleData(10)));
|
---|
| 122 | injector.AddVariable(new HeuristicLab.Core.Variable("TotalEvaluatedNodes", new DoubleData(0)));
|
---|
| 123 | injector.AddVariable(new HeuristicLab.Core.Variable("TreeEvaluator", new HL2TreeEvaluator()));
|
---|
| 124 | injector.AddVariable(new HeuristicLab.Core.Variable("UseEstimatedTargetValue", new BoolData(false)));
|
---|
| 125 |
|
---|
| 126 | return injector;
|
---|
| 127 | }
|
---|
| 128 |
|
---|
| 129 | private IOperator CreateModelAnalyser() {
|
---|
| 130 | CombinedOperator modelAnalyser = new CombinedOperator();
|
---|
| 131 | modelAnalyser.Name = "Model Analyzer";
|
---|
| 132 | SequentialProcessor seqProc = new SequentialProcessor();
|
---|
| 133 | #region MSE
|
---|
| 134 | MeanSquaredErrorEvaluator trainingMSE = new MeanSquaredErrorEvaluator();
|
---|
| 135 | trainingMSE.Name = "TrainingMseEvaluator";
|
---|
| 136 | trainingMSE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 137 | trainingMSE.GetVariableInfo("MSE").ActualName = "TrainingQuality";
|
---|
[2161] | 138 | trainingMSE.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
| 139 | trainingMSE.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
[2154] | 140 | MeanSquaredErrorEvaluator validationMSE = new MeanSquaredErrorEvaluator();
|
---|
| 141 | validationMSE.Name = "ValidationMseEvaluator";
|
---|
| 142 | validationMSE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 143 | validationMSE.GetVariableInfo("MSE").ActualName = "ValidationQuality";
|
---|
| 144 | validationMSE.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
|
---|
| 145 | validationMSE.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
|
---|
| 146 | MeanSquaredErrorEvaluator testMSE = new MeanSquaredErrorEvaluator();
|
---|
| 147 | testMSE.Name = "TestMseEvaluator";
|
---|
| 148 | testMSE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 149 | testMSE.GetVariableInfo("MSE").ActualName = "TestQuality";
|
---|
| 150 | testMSE.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
|
---|
| 151 | testMSE.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
|
---|
| 152 | #endregion
|
---|
| 153 |
|
---|
| 154 | #region R2
|
---|
| 155 | CoefficientOfDeterminationEvaluator trainingR2 = new CoefficientOfDeterminationEvaluator();
|
---|
| 156 | trainingR2.Name = "TrainingR2Evaluator";
|
---|
| 157 | trainingR2.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 158 | trainingR2.GetVariableInfo("R2").ActualName = "TrainingR2";
|
---|
[2161] | 159 | trainingR2.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
| 160 | trainingR2.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
[2154] | 161 | CoefficientOfDeterminationEvaluator validationR2 = new CoefficientOfDeterminationEvaluator();
|
---|
| 162 | validationR2.Name = "ValidationR2Evaluator";
|
---|
| 163 | validationR2.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 164 | validationR2.GetVariableInfo("R2").ActualName = "ValidationR2";
|
---|
| 165 | validationR2.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
|
---|
| 166 | validationR2.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
|
---|
| 167 | CoefficientOfDeterminationEvaluator testR2 = new CoefficientOfDeterminationEvaluator();
|
---|
| 168 | testR2.Name = "TestR2Evaluator";
|
---|
| 169 | testR2.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 170 | testR2.GetVariableInfo("R2").ActualName = "TestR2";
|
---|
| 171 | testR2.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
|
---|
| 172 | testR2.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
|
---|
| 173 | #endregion
|
---|
| 174 |
|
---|
| 175 | #region MAPE
|
---|
| 176 | MeanAbsolutePercentageErrorEvaluator trainingMAPE = new MeanAbsolutePercentageErrorEvaluator();
|
---|
| 177 | trainingMAPE.Name = "TrainingMapeEvaluator";
|
---|
| 178 | trainingMAPE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 179 | trainingMAPE.GetVariableInfo("MAPE").ActualName = "TrainingMAPE";
|
---|
[2161] | 180 | trainingMAPE.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
| 181 | trainingMAPE.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
[2154] | 182 | MeanAbsolutePercentageErrorEvaluator validationMAPE = new MeanAbsolutePercentageErrorEvaluator();
|
---|
| 183 | validationMAPE.Name = "ValidationMapeEvaluator";
|
---|
| 184 | validationMAPE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 185 | validationMAPE.GetVariableInfo("MAPE").ActualName = "ValidationMAPE";
|
---|
| 186 | validationMAPE.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
|
---|
| 187 | validationMAPE.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
|
---|
| 188 | MeanAbsolutePercentageErrorEvaluator testMAPE = new MeanAbsolutePercentageErrorEvaluator();
|
---|
| 189 | testMAPE.Name = "TestMapeEvaluator";
|
---|
| 190 | testMAPE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 191 | testMAPE.GetVariableInfo("MAPE").ActualName = "TestMAPE";
|
---|
| 192 | testMAPE.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
|
---|
| 193 | testMAPE.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
|
---|
| 194 | #endregion
|
---|
| 195 |
|
---|
| 196 | #region MAPRE
|
---|
| 197 | MeanAbsolutePercentageOfRangeErrorEvaluator trainingMAPRE = new MeanAbsolutePercentageOfRangeErrorEvaluator();
|
---|
| 198 | trainingMAPRE.Name = "TrainingMapreEvaluator";
|
---|
| 199 | trainingMAPRE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 200 | trainingMAPRE.GetVariableInfo("MAPRE").ActualName = "TrainingMAPRE";
|
---|
[2161] | 201 | trainingMAPRE.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
| 202 | trainingMAPRE.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
[2154] | 203 | MeanAbsolutePercentageOfRangeErrorEvaluator validationMAPRE = new MeanAbsolutePercentageOfRangeErrorEvaluator();
|
---|
| 204 | validationMAPRE.Name = "ValidationMapreEvaluator";
|
---|
| 205 | validationMAPRE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 206 | validationMAPRE.GetVariableInfo("MAPRE").ActualName = "ValidationMAPRE";
|
---|
| 207 | validationMAPRE.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
|
---|
| 208 | validationMAPRE.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
|
---|
| 209 | MeanAbsolutePercentageOfRangeErrorEvaluator testMAPRE = new MeanAbsolutePercentageOfRangeErrorEvaluator();
|
---|
| 210 | testMAPRE.Name = "TestMapreEvaluator";
|
---|
| 211 | testMAPRE.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 212 | testMAPRE.GetVariableInfo("MAPRE").ActualName = "TestMAPRE";
|
---|
| 213 | testMAPRE.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
|
---|
| 214 | testMAPRE.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
|
---|
| 215 | #endregion
|
---|
| 216 |
|
---|
| 217 | #region VAF
|
---|
| 218 | VarianceAccountedForEvaluator trainingVAF = new VarianceAccountedForEvaluator();
|
---|
| 219 | trainingVAF.Name = "TrainingVafEvaluator";
|
---|
| 220 | trainingVAF.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 221 | trainingVAF.GetVariableInfo("VAF").ActualName = "TrainingVAF";
|
---|
[2161] | 222 | trainingVAF.GetVariableInfo("SamplesStart").ActualName = "ActualTrainingSamplesStart";
|
---|
| 223 | trainingVAF.GetVariableInfo("SamplesEnd").ActualName = "ActualTrainingSamplesEnd";
|
---|
[2154] | 224 | VarianceAccountedForEvaluator validationVAF = new VarianceAccountedForEvaluator();
|
---|
| 225 | validationVAF.Name = "ValidationVafEvaluator";
|
---|
| 226 | validationVAF.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 227 | validationVAF.GetVariableInfo("VAF").ActualName = "ValidationVAF";
|
---|
| 228 | validationVAF.GetVariableInfo("SamplesStart").ActualName = "ValidationSamplesStart";
|
---|
| 229 | validationVAF.GetVariableInfo("SamplesEnd").ActualName = "ValidationSamplesEnd";
|
---|
| 230 | VarianceAccountedForEvaluator testVAF = new VarianceAccountedForEvaluator();
|
---|
| 231 | testVAF.Name = "TestVafEvaluator";
|
---|
| 232 | testVAF.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 233 | testVAF.GetVariableInfo("VAF").ActualName = "TestVAF";
|
---|
| 234 | testVAF.GetVariableInfo("SamplesStart").ActualName = "TestSamplesStart";
|
---|
| 235 | testVAF.GetVariableInfo("SamplesEnd").ActualName = "TestSamplesEnd";
|
---|
| 236 | #endregion
|
---|
| 237 |
|
---|
| 238 | HeuristicLab.GP.StructureIdentification.VariableEvaluationImpactCalculator evalImpactCalc = new HeuristicLab.GP.StructureIdentification.VariableEvaluationImpactCalculator();
|
---|
| 239 | evalImpactCalc.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 240 | HeuristicLab.Modeling.VariableQualityImpactCalculator qualImpactCalc = new HeuristicLab.GP.StructureIdentification.VariableQualityImpactCalculator();
|
---|
| 241 | qualImpactCalc.GetVariableInfo("FunctionTree").ActualName = "LinearRegressionModel";
|
---|
| 242 | seqProc.AddSubOperator(trainingMSE);
|
---|
| 243 | seqProc.AddSubOperator(validationMSE);
|
---|
| 244 | seqProc.AddSubOperator(testMSE);
|
---|
| 245 | seqProc.AddSubOperator(trainingR2);
|
---|
| 246 | seqProc.AddSubOperator(validationR2);
|
---|
| 247 | seqProc.AddSubOperator(testR2);
|
---|
| 248 | seqProc.AddSubOperator(trainingMAPE);
|
---|
| 249 | seqProc.AddSubOperator(validationMAPE);
|
---|
| 250 | seqProc.AddSubOperator(testMAPE);
|
---|
| 251 | seqProc.AddSubOperator(trainingMAPRE);
|
---|
| 252 | seqProc.AddSubOperator(validationMAPRE);
|
---|
| 253 | seqProc.AddSubOperator(testMAPRE);
|
---|
| 254 | seqProc.AddSubOperator(trainingVAF);
|
---|
| 255 | seqProc.AddSubOperator(validationVAF);
|
---|
| 256 | seqProc.AddSubOperator(testVAF);
|
---|
| 257 | seqProc.AddSubOperator(qualImpactCalc);
|
---|
| 258 | seqProc.AddSubOperator(evalImpactCalc);
|
---|
| 259 | modelAnalyser.OperatorGraph.InitialOperator = seqProc;
|
---|
| 260 | modelAnalyser.OperatorGraph.AddOperator(seqProc);
|
---|
| 261 | return modelAnalyser;
|
---|
| 262 | }
|
---|
| 263 |
|
---|
| 264 |
|
---|
| 265 | protected internal virtual Model CreateLRModel(IScope bestModelScope) {
|
---|
| 266 | Model model = new Model();
|
---|
| 267 | model.TrainingMeanSquaredError = bestModelScope.GetVariableValue<DoubleData>("TrainingQuality", false).Data;
|
---|
| 268 | model.ValidationMeanSquaredError = bestModelScope.GetVariableValue<DoubleData>("ValidationQuality", false).Data;
|
---|
| 269 | model.TestMeanSquaredError = bestModelScope.GetVariableValue<DoubleData>("TestQuality", false).Data;
|
---|
| 270 | model.TrainingCoefficientOfDetermination = bestModelScope.GetVariableValue<DoubleData>("TrainingR2", false).Data;
|
---|
| 271 | model.ValidationCoefficientOfDetermination = bestModelScope.GetVariableValue<DoubleData>("ValidationR2", false).Data;
|
---|
| 272 | model.TestCoefficientOfDetermination = bestModelScope.GetVariableValue<DoubleData>("TestR2", false).Data;
|
---|
| 273 | model.TrainingMeanAbsolutePercentageError = bestModelScope.GetVariableValue<DoubleData>("TrainingMAPE", false).Data;
|
---|
| 274 | model.ValidationMeanAbsolutePercentageError = bestModelScope.GetVariableValue<DoubleData>("ValidationMAPE", false).Data;
|
---|
| 275 | model.TestMeanAbsolutePercentageError = bestModelScope.GetVariableValue<DoubleData>("TestMAPE", false).Data;
|
---|
| 276 | model.TrainingMeanAbsolutePercentageOfRangeError = bestModelScope.GetVariableValue<DoubleData>("TrainingMAPRE", false).Data;
|
---|
| 277 | model.ValidationMeanAbsolutePercentageOfRangeError = bestModelScope.GetVariableValue<DoubleData>("ValidationMAPRE", false).Data;
|
---|
| 278 | model.TestMeanAbsolutePercentageOfRangeError = bestModelScope.GetVariableValue<DoubleData>("TestMAPRE", false).Data;
|
---|
| 279 | model.TrainingVarianceAccountedFor = bestModelScope.GetVariableValue<DoubleData>("TrainingVAF", false).Data;
|
---|
| 280 | model.ValidationVarianceAccountedFor = bestModelScope.GetVariableValue<DoubleData>("ValidationVAF", false).Data;
|
---|
| 281 | model.TestVarianceAccountedFor = bestModelScope.GetVariableValue<DoubleData>("TestVAF", false).Data;
|
---|
| 282 |
|
---|
| 283 | model.Data = bestModelScope.GetVariableValue<IFunctionTree>("LinearRegressionModel", false);
|
---|
| 284 | HeuristicLab.DataAnalysis.Dataset ds = bestModelScope.GetVariableValue<Dataset>("Dataset", true);
|
---|
| 285 | model.Dataset = ds;
|
---|
| 286 | model.TargetVariable = ds.GetVariableName(bestModelScope.GetVariableValue<IntData>("TargetVariable", true).Data);
|
---|
| 287 |
|
---|
| 288 | ItemList evaluationImpacts = bestModelScope.GetVariableValue<ItemList>("VariableEvaluationImpacts", false);
|
---|
| 289 | ItemList qualityImpacts = bestModelScope.GetVariableValue<ItemList>("VariableQualityImpacts", false);
|
---|
| 290 | foreach (ItemList row in evaluationImpacts) {
|
---|
| 291 | string variableName = ((StringData)row[0]).Data;
|
---|
| 292 | double impact = ((DoubleData)row[1]).Data;
|
---|
| 293 | model.SetVariableEvaluationImpact(variableName, impact);
|
---|
| 294 | }
|
---|
| 295 | foreach (ItemList row in qualityImpacts) {
|
---|
| 296 | string variableName = ((StringData)row[0]).Data;
|
---|
| 297 | double impact = ((DoubleData)row[1]).Data;
|
---|
| 298 | model.SetVariableQualityImpact(variableName, impact);
|
---|
| 299 | }
|
---|
| 300 |
|
---|
| 301 | return model;
|
---|
| 302 | }
|
---|
| 303 |
|
---|
| 304 | private IOperator GetMainOperator() {
|
---|
| 305 | CombinedOperator lr = (CombinedOperator)Engine.OperatorGraph.InitialOperator;
|
---|
| 306 | return lr.OperatorGraph.InitialOperator;
|
---|
| 307 | }
|
---|
| 308 |
|
---|
| 309 | public override IView CreateView() {
|
---|
| 310 | return engine.CreateView();
|
---|
| 311 | }
|
---|
| 312 |
|
---|
| 313 | #region IEditable Members
|
---|
| 314 |
|
---|
| 315 | public IEditor CreateEditor() {
|
---|
| 316 | return engine.CreateEditor();
|
---|
| 317 | }
|
---|
| 318 |
|
---|
| 319 | #endregion
|
---|
| 320 | }
|
---|
| 321 | }
|
---|