[1477] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Random;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.GP {
|
---|
| 30 | public class TrainingWindowSlider : OperatorBase {
|
---|
| 31 |
|
---|
| 32 | private const string TRAINING_SAMPLES_START = "TrainingSamplesStart";
|
---|
| 33 | private const string TRAINING_SAMPLES_END = "TrainingSamplesEnd";
|
---|
| 34 | private const string TRAINING_WINDOW_START = "TrainingWindowStart";
|
---|
| 35 | private const string TRAINING_WINDOW_END = "TrainingWindowEnd";
|
---|
| 36 | private const string STEP_SIZE = "SlidingStepSize";
|
---|
| 37 |
|
---|
| 38 | public override string Description {
|
---|
| 39 | get { return @"Modifies variables TrainingSamplesStart and TrainingSamplesEnd to have a continually sliding window over the whole training data set."; }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | public TrainingWindowSlider() {
|
---|
| 43 | AddVariableInfo(new VariableInfo(TRAINING_SAMPLES_START, "Start of whole training set", typeof(IntData), VariableKind.In));
|
---|
| 44 | AddVariableInfo(new VariableInfo(TRAINING_SAMPLES_END, "End of whole training set", typeof(IntData), VariableKind.In));
|
---|
| 45 | AddVariableInfo(new VariableInfo(TRAINING_WINDOW_START, "Start of training set window", typeof(IntData), VariableKind.In | VariableKind.Out));
|
---|
| 46 | AddVariableInfo(new VariableInfo(TRAINING_WINDOW_END, "End of training set window", typeof(IntData), VariableKind.In | VariableKind.Out));
|
---|
[1480] | 47 | AddVariableInfo(new VariableInfo(STEP_SIZE, "Number of samples to slide the window forward", typeof(IntData), VariableKind.In));
|
---|
[1477] | 48 | }
|
---|
| 49 |
|
---|
| 50 | public override IOperation Apply(IScope scope) {
|
---|
| 51 | int trainingSamplesStart = GetVariableValue<IntData>(TRAINING_SAMPLES_START, scope, true).Data;
|
---|
| 52 | int trainingSamplesEnd = GetVariableValue<IntData>(TRAINING_SAMPLES_END, scope, true).Data;
|
---|
[1484] | 53 | IntData trainingWindowStart = GetVariableValue<IntData>(TRAINING_WINDOW_START, scope, true);
|
---|
| 54 | IntData trainingWindowEnd = GetVariableValue<IntData>(TRAINING_WINDOW_END, scope, true);
|
---|
[1477] | 55 | int stepSize = GetVariableValue<IntData>(STEP_SIZE, scope, true).Data;
|
---|
| 56 |
|
---|
[1484] | 57 | if (trainingWindowEnd.Data + stepSize <= trainingSamplesEnd) {
|
---|
| 58 | trainingWindowStart.Data = trainingWindowStart.Data + stepSize;
|
---|
| 59 | trainingWindowEnd.Data = trainingWindowEnd.Data + stepSize;
|
---|
[1477] | 60 | }
|
---|
| 61 |
|
---|
| 62 | return null;
|
---|
| 63 | }
|
---|
| 64 | }
|
---|
| 65 | }
|
---|