1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Operators;
|
---|
28 | using HeuristicLab.Random;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Constraints;
|
---|
31 | using System.Diagnostics;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.GP {
|
---|
34 | /// <summary>
|
---|
35 | /// Implementation of a size fair crossover operator as described in:
|
---|
36 | /// William B. Langdon
|
---|
37 | /// Size Fair and Homologous Tree Genetic Programming Crossovers,
|
---|
38 | /// Genetic Programming and Evolvable Machines, Vol. 1, Number 1/2, pp. 95-119, April 2000
|
---|
39 | /// </summary>
|
---|
40 | public class SizeFairCrossOver : OperatorBase {
|
---|
41 | private const int MAX_RECOMBINATION_TRIES = 20;
|
---|
42 | public override string Description {
|
---|
43 | get {
|
---|
44 | return @"";
|
---|
45 | }
|
---|
46 | }
|
---|
47 | public SizeFairCrossOver()
|
---|
48 | : base() {
|
---|
49 | AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(MersenneTwister), VariableKind.In));
|
---|
50 | AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In));
|
---|
51 | AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In));
|
---|
52 | AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In));
|
---|
53 | AddVariableInfo(new VariableInfo("FunctionTree", "The tree to mutate", typeof(IFunctionTree), VariableKind.In | VariableKind.New));
|
---|
54 | AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New));
|
---|
55 | AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New));
|
---|
56 | }
|
---|
57 |
|
---|
58 | public override IOperation Apply(IScope scope) {
|
---|
59 | MersenneTwister random = GetVariableValue<MersenneTwister>("Random", scope, true);
|
---|
60 | GPOperatorLibrary opLibrary = GetVariableValue<GPOperatorLibrary>("OperatorLibrary", scope, true);
|
---|
61 | int maxTreeHeight = GetVariableValue<IntData>("MaxTreeHeight", scope, true).Data;
|
---|
62 | int maxTreeSize = GetVariableValue<IntData>("MaxTreeSize", scope, true).Data;
|
---|
63 |
|
---|
64 | TreeGardener gardener = new TreeGardener(random, opLibrary);
|
---|
65 |
|
---|
66 | if ((scope.SubScopes.Count % 2) != 0)
|
---|
67 | throw new InvalidOperationException("Number of parents is not even");
|
---|
68 |
|
---|
69 | int children = scope.SubScopes.Count / 2;
|
---|
70 | for (int i = 0; i < children; i++) {
|
---|
71 | IScope parent1 = scope.SubScopes[0];
|
---|
72 | scope.RemoveSubScope(parent1);
|
---|
73 | IScope parent2 = scope.SubScopes[0];
|
---|
74 | scope.RemoveSubScope(parent2);
|
---|
75 | IScope child = new Scope(i.ToString());
|
---|
76 | Cross(gardener, maxTreeSize, maxTreeHeight, scope, random, parent1, parent2, child);
|
---|
77 | scope.AddSubScope(child);
|
---|
78 | }
|
---|
79 |
|
---|
80 | return null;
|
---|
81 | }
|
---|
82 |
|
---|
83 | private void Cross(TreeGardener gardener, int maxTreeSize, int maxTreeHeight,
|
---|
84 | IScope scope, MersenneTwister random, IScope parent1, IScope parent2, IScope child) {
|
---|
85 | IFunctionTree newTree = Cross(gardener, parent1, parent2,
|
---|
86 | random, maxTreeSize, maxTreeHeight);
|
---|
87 |
|
---|
88 | child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), newTree));
|
---|
89 | child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(newTree.Size)));
|
---|
90 | child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(newTree.Height)));
|
---|
91 |
|
---|
92 | // check if the new tree is valid and the height and size are still in the allowed bounds
|
---|
93 | Debug.Assert(gardener.IsValidTree(newTree) && newTree.Height <= maxTreeHeight && newTree.Size <= maxTreeSize);
|
---|
94 | }
|
---|
95 |
|
---|
96 |
|
---|
97 | private IFunctionTree Cross(TreeGardener gardener, IScope f, IScope g, MersenneTwister random, int maxTreeSize, int maxTreeHeight) {
|
---|
98 | IFunctionTree tree0 = f.GetVariableValue<IFunctionTree>("FunctionTree", false);
|
---|
99 | int tree0Height = f.GetVariableValue<IntData>("TreeHeight", false).Data;
|
---|
100 | int tree0Size = f.GetVariableValue<IntData>("TreeSize", false).Data;
|
---|
101 |
|
---|
102 | IFunctionTree tree1 = g.GetVariableValue<IFunctionTree>("FunctionTree", false);
|
---|
103 | int tree1Height = g.GetVariableValue<IntData>("TreeHeight", false).Data;
|
---|
104 | int tree1Size = g.GetVariableValue<IntData>("TreeSize", false).Data;
|
---|
105 |
|
---|
106 | // we are going to insert tree1 into tree0 at a random place so we have to make sure that tree0 is not a terminal
|
---|
107 | // in case both trees are higher than 1 we swap the trees with probability 50%
|
---|
108 | if (tree0Height == 1 || (tree1Height > 1 && random.Next(2) == 0)) {
|
---|
109 | IFunctionTree tmp = tree0; tree0 = tree1; tree1 = tmp;
|
---|
110 | int tmpHeight = tree0Height; tree0Height = tree1Height; tree1Height = tmpHeight;
|
---|
111 | int tmpSize = tree0Size; tree0Size = tree1Size; tree1Size = tmpSize;
|
---|
112 | }
|
---|
113 |
|
---|
114 | // select a random suboperator of the 'receiving' tree
|
---|
115 | IFunctionTree crossoverPoint = gardener.GetRandomParentNode(tree0);
|
---|
116 | int removedBranchIndex;
|
---|
117 | IFunctionTree removedBranch;
|
---|
118 | IList<IFunction> allowedFunctions;
|
---|
119 | if (crossoverPoint == null) {
|
---|
120 | removedBranchIndex = 0;
|
---|
121 | removedBranch = tree0;
|
---|
122 | allowedFunctions = gardener.GetAllowedSubFunctions(null, 0);
|
---|
123 | } else {
|
---|
124 | removedBranchIndex = random.Next(crossoverPoint.SubTrees.Count);
|
---|
125 | removedBranch = crossoverPoint.SubTrees[removedBranchIndex];
|
---|
126 | allowedFunctions = gardener.GetAllowedSubFunctions(crossoverPoint.Function, removedBranchIndex);
|
---|
127 | }
|
---|
128 | int removedBranchSize = removedBranch.Size;
|
---|
129 | int maxBranchSize = maxTreeSize - (tree0.Size - removedBranchSize);
|
---|
130 | int maxBranchHeight = maxTreeHeight - gardener.GetBranchLevel(tree0, removedBranch) + 1;
|
---|
131 | IFunctionTree insertedBranch = GetReplacementBranch(random, gardener, allowedFunctions, tree1, removedBranchSize, maxBranchSize, maxBranchHeight);
|
---|
132 |
|
---|
133 | int tries = 0;
|
---|
134 | while (insertedBranch == null) {
|
---|
135 | if (tries++ > MAX_RECOMBINATION_TRIES) {
|
---|
136 | if (random.Next() > 0.5) return tree1;
|
---|
137 | else return tree0;
|
---|
138 | }
|
---|
139 |
|
---|
140 | // retry with a different crossoverPoint
|
---|
141 | crossoverPoint = gardener.GetRandomParentNode(tree0);
|
---|
142 | if (crossoverPoint == null) {
|
---|
143 | removedBranchIndex = 0;
|
---|
144 | removedBranch = tree0;
|
---|
145 | allowedFunctions = gardener.GetAllowedSubFunctions(null, 0);
|
---|
146 | } else {
|
---|
147 | removedBranchIndex = random.Next(crossoverPoint.SubTrees.Count);
|
---|
148 | removedBranch = crossoverPoint.SubTrees[removedBranchIndex];
|
---|
149 | allowedFunctions = gardener.GetAllowedSubFunctions(crossoverPoint.Function, removedBranchIndex);
|
---|
150 | }
|
---|
151 | removedBranchSize = removedBranch.Size;
|
---|
152 | maxBranchSize = maxTreeSize - (tree0.Size - removedBranchSize);
|
---|
153 | maxBranchHeight = maxTreeHeight - gardener.GetBranchLevel(tree0, removedBranch) + 1;
|
---|
154 | insertedBranch = GetReplacementBranch(random, gardener, allowedFunctions, tree1, removedBranchSize, maxBranchSize, maxBranchHeight);
|
---|
155 | }
|
---|
156 | if (crossoverPoint != null) {
|
---|
157 | // replace the branch below the crossoverpoint with the selected branch from root1
|
---|
158 | crossoverPoint.RemoveSubTree(removedBranchIndex);
|
---|
159 | crossoverPoint.InsertSubTree(removedBranchIndex, insertedBranch);
|
---|
160 | return tree0;
|
---|
161 | } else {
|
---|
162 | return insertedBranch;
|
---|
163 | }
|
---|
164 | }
|
---|
165 |
|
---|
166 | private IFunctionTree GetReplacementBranch(IRandom random, TreeGardener gardener, IList<IFunction> allowedFunctions, IFunctionTree tree, int removedBranchSize, int maxBranchSize, int maxBranchHeight) {
|
---|
167 | var branches = gardener.GetAllSubTrees(tree).Where(t => allowedFunctions.Contains(t.Function) && t.Size < maxBranchSize && t.Height < maxBranchHeight)
|
---|
168 | .Select(t => new { Tree = t, Size = t.Size }).Where(s => s.Size < 2 * removedBranchSize + 1);
|
---|
169 |
|
---|
170 | var shorterBranches = branches.Where(t => t.Size < removedBranchSize);
|
---|
171 | var longerBranches = branches.Where(t => t.Size > removedBranchSize);
|
---|
172 | var equalLengthBranches = branches.Where(t => t.Size == removedBranchSize);
|
---|
173 |
|
---|
174 | if (shorterBranches.Count() == 0 || longerBranches.Count() == 0) {
|
---|
175 | if (equalLengthBranches.Count() == 0) {
|
---|
176 | return null;
|
---|
177 | } else {
|
---|
178 | return equalLengthBranches.ElementAt(random.Next(equalLengthBranches.Count())).Tree;
|
---|
179 | }
|
---|
180 | } else {
|
---|
181 | // invariant: |shorterBranches| > 0 and |longerBranches| > 0
|
---|
182 | double pEqualLength = equalLengthBranches.Count() > 0 ? 1.0 / removedBranchSize : 0.0;
|
---|
183 | double pLonger = (1.0 - pEqualLength) / (longerBranches.Count() * (1.0 + longerBranches.Average(t => t.Size) / shorterBranches.Average(t => t.Size)));
|
---|
184 | double pShorter = (1.0 - pEqualLength - pLonger);
|
---|
185 |
|
---|
186 | double r = random.NextDouble();
|
---|
187 | if (r < pLonger) {
|
---|
188 | return longerBranches.ElementAt(random.Next(longerBranches.Count())).Tree;
|
---|
189 | } else if (r < pLonger + pShorter) {
|
---|
190 | return shorterBranches.ElementAt(random.Next(shorterBranches.Count())).Tree;
|
---|
191 | } else {
|
---|
192 | return equalLengthBranches.ElementAt(random.Next(equalLengthBranches.Count())).Tree;
|
---|
193 | }
|
---|
194 | }
|
---|
195 | }
|
---|
196 | }
|
---|
197 | }
|
---|