[835] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Operators;
|
---|
| 28 | using HeuristicLab.Random;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Constraints;
|
---|
| 31 | using System.Diagnostics;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.GP {
|
---|
[1197] | 34 | public abstract class SizeConstrictedGPCrossoverBase : GPCrossoverBase {
|
---|
| 35 |
|
---|
| 36 | private int MaxRecombinationTries { get { return 20; } }
|
---|
| 37 |
|
---|
[835] | 38 | public SizeConstrictedGPCrossoverBase()
|
---|
| 39 | : base() {
|
---|
| 40 | AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In));
|
---|
| 41 | AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In));
|
---|
| 42 | }
|
---|
| 43 |
|
---|
[1286] | 44 | internal override IFunctionTree Cross(IScope scope, TreeGardener gardener, IRandom random, IFunctionTree tree0, IFunctionTree tree1) {
|
---|
[835] | 45 | int maxTreeHeight = GetVariableValue<IntData>("MaxTreeHeight", scope, true).Data;
|
---|
| 46 | int maxTreeSize = GetVariableValue<IntData>("MaxTreeSize", scope, true).Data;
|
---|
| 47 |
|
---|
| 48 | // when tree0 is terminal then try to cross into tree1, when tree1 is also terminal just return tree0 unchanged.
|
---|
| 49 | IFunctionTree newTree;
|
---|
[1197] | 50 | int tries = 0;
|
---|
| 51 | do {
|
---|
[1212] | 52 | if (tries++ > MaxRecombinationTries)
|
---|
| 53 | // if after so many tries it was not possible to create a solution within the given size constraints just return the tree without changes.
|
---|
| 54 | return tree0;
|
---|
[1197] | 55 | if (tree0.SubTrees.Count > 0) {
|
---|
| 56 | newTree = Cross(gardener, random, (IFunctionTree)tree0.Clone(), (IFunctionTree)tree1.Clone(), maxTreeSize, maxTreeHeight);
|
---|
| 57 | } else if (tree1.SubTrees.Count > 0) {
|
---|
| 58 | newTree = Cross(gardener, random, (IFunctionTree)tree1.Clone(), (IFunctionTree)tree0.Clone(), maxTreeSize, maxTreeHeight);
|
---|
| 59 | } else newTree = tree0;
|
---|
| 60 | } while (newTree.Size > maxTreeSize || newTree.Height > maxTreeHeight);
|
---|
[835] | 61 | return newTree;
|
---|
| 62 | }
|
---|
| 63 |
|
---|
[1286] | 64 | internal abstract IFunctionTree Cross(TreeGardener gardener, IRandom random, IFunctionTree tree0, IFunctionTree tree1, int maxTreeSize, int maxTreeHeight);
|
---|
[835] | 65 |
|
---|
[1286] | 66 | //private IFunctionTree TakeNextParent(IScope scope) {
|
---|
| 67 | // IFunctionTree parent = GetVariableValue<IFunctionTree>("FunctionTree", scope.SubScopes[0], false);
|
---|
| 68 | // scope.RemoveSubScope(scope.SubScopes[0]);
|
---|
| 69 | // return parent;
|
---|
| 70 | //}
|
---|
[835] | 71 | }
|
---|
| 72 | }
|
---|