[645] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Operators;
|
---|
| 28 | using HeuristicLab.Random;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Constraints;
|
---|
| 31 | using System.Diagnostics;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.GP {
|
---|
| 34 | /// <summary>
|
---|
| 35 | /// Implementation of a homologous crossover operator as described in:
|
---|
| 36 | /// William B. Langdon
|
---|
| 37 | /// Size Fair and Homologous Tree Genetic Programming Crossovers,
|
---|
| 38 | /// Genetic Programming and Evolvable Machines, Vol. 1, Number 1/2, pp. 95-119, April 2000
|
---|
| 39 | /// </summary>
|
---|
| 40 | public class LangdonHomologousCrossOver : OperatorBase {
|
---|
| 41 | private const int MAX_RECOMBINATION_TRIES = 20;
|
---|
| 42 | public override string Description {
|
---|
| 43 | get {
|
---|
| 44 | return @"";
|
---|
| 45 | }
|
---|
| 46 | }
|
---|
| 47 | public LangdonHomologousCrossOver()
|
---|
| 48 | : base() {
|
---|
| 49 | AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(MersenneTwister), VariableKind.In));
|
---|
| 50 | AddVariableInfo(new VariableInfo("OperatorLibrary", "The operator library containing all available operators", typeof(GPOperatorLibrary), VariableKind.In));
|
---|
| 51 | AddVariableInfo(new VariableInfo("MaxTreeHeight", "The maximal allowed height of the tree", typeof(IntData), VariableKind.In));
|
---|
| 52 | AddVariableInfo(new VariableInfo("MaxTreeSize", "The maximal allowed size (number of nodes) of the tree", typeof(IntData), VariableKind.In));
|
---|
| 53 | AddVariableInfo(new VariableInfo("FunctionTree", "The tree to mutate", typeof(IFunctionTree), VariableKind.In | VariableKind.New));
|
---|
| 54 | AddVariableInfo(new VariableInfo("TreeSize", "The size (number of nodes) of the tree", typeof(IntData), VariableKind.New));
|
---|
| 55 | AddVariableInfo(new VariableInfo("TreeHeight", "The height of the tree", typeof(IntData), VariableKind.New));
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public override IOperation Apply(IScope scope) {
|
---|
| 59 | MersenneTwister random = GetVariableValue<MersenneTwister>("Random", scope, true);
|
---|
| 60 | GPOperatorLibrary opLibrary = GetVariableValue<GPOperatorLibrary>("OperatorLibrary", scope, true);
|
---|
| 61 | int maxTreeHeight = GetVariableValue<IntData>("MaxTreeHeight", scope, true).Data;
|
---|
| 62 | int maxTreeSize = GetVariableValue<IntData>("MaxTreeSize", scope, true).Data;
|
---|
| 63 |
|
---|
| 64 | TreeGardener gardener = new TreeGardener(random, opLibrary);
|
---|
| 65 |
|
---|
| 66 | if((scope.SubScopes.Count % 2) != 0)
|
---|
| 67 | throw new InvalidOperationException("Number of parents is not even");
|
---|
| 68 |
|
---|
| 69 | CompositeOperation initOperations = new CompositeOperation();
|
---|
| 70 |
|
---|
| 71 | int children = scope.SubScopes.Count / 2;
|
---|
| 72 | for(int i = 0; i < children; i++) {
|
---|
| 73 | IScope parent1 = scope.SubScopes[0];
|
---|
| 74 | scope.RemoveSubScope(parent1);
|
---|
| 75 | IScope parent2 = scope.SubScopes[0];
|
---|
| 76 | scope.RemoveSubScope(parent2);
|
---|
| 77 | IScope child = new Scope(i.ToString());
|
---|
| 78 | IOperation childInitOperation = Cross(gardener, maxTreeSize, maxTreeHeight, scope, random, parent1, parent2, child);
|
---|
| 79 | initOperations.AddOperation(childInitOperation);
|
---|
| 80 | scope.AddSubScope(child);
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | return initOperations;
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | private IOperation Cross(TreeGardener gardener, int maxTreeSize, int maxTreeHeight,
|
---|
| 87 | IScope scope, MersenneTwister random, IScope parent1, IScope parent2, IScope child) {
|
---|
| 88 | List<IFunctionTree> newBranches;
|
---|
| 89 | IFunctionTree newTree = Cross(gardener, parent1, parent2,
|
---|
| 90 | random, maxTreeSize, maxTreeHeight, out newBranches);
|
---|
| 91 |
|
---|
| 92 |
|
---|
| 93 | int newTreeSize = newTree.Size;
|
---|
| 94 | int newTreeHeight = newTree.Height;
|
---|
| 95 | child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), newTree));
|
---|
| 96 | child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeSize"), new IntData(newTreeSize)));
|
---|
| 97 | child.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TreeHeight"), new IntData(newTreeHeight)));
|
---|
| 98 |
|
---|
| 99 | // check if the new tree is valid and if the height of is still in the allowed bounds (we are not so strict for the max-size)
|
---|
| 100 | Debug.Assert(gardener.IsValidTree(newTree) && newTreeHeight <= maxTreeHeight && newTreeSize <= maxTreeSize);
|
---|
| 101 | return gardener.CreateInitializationOperation(newBranches, child);
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 |
|
---|
| 105 | private IFunctionTree Cross(TreeGardener gardener, IScope f, IScope g, MersenneTwister random, int maxTreeSize, int maxTreeHeight, out List<IFunctionTree> newBranches) {
|
---|
| 106 | IFunctionTree tree0 = f.GetVariableValue<IFunctionTree>("FunctionTree", false);
|
---|
| 107 | int tree0Height = f.GetVariableValue<IntData>("TreeHeight", false).Data;
|
---|
| 108 | int tree0Size = f.GetVariableValue<IntData>("TreeSize", false).Data;
|
---|
| 109 |
|
---|
| 110 | IFunctionTree tree1 = g.GetVariableValue<IFunctionTree>("FunctionTree", false);
|
---|
| 111 | int tree1Height = g.GetVariableValue<IntData>("TreeHeight", false).Data;
|
---|
| 112 | int tree1Size = g.GetVariableValue<IntData>("TreeSize", false).Data;
|
---|
| 113 |
|
---|
| 114 | if(tree0Size == 1 && tree1Size == 1) {
|
---|
| 115 | return CombineTerminals(gardener, tree0, tree1, random, maxTreeHeight, out newBranches);
|
---|
| 116 | } else {
|
---|
| 117 | newBranches = new List<IFunctionTree>();
|
---|
| 118 |
|
---|
| 119 | // we are going to insert tree1 into tree0 at a random place so we have to make sure that tree0 is not a terminal
|
---|
| 120 | // in case both trees are higher than 1 we swap the trees with probability 50%
|
---|
| 121 | if(tree0Height == 1 || (tree1Height > 1 && random.Next(2) == 0)) {
|
---|
| 122 | IFunctionTree tmp = tree0; tree0 = tree1; tree1 = tmp;
|
---|
| 123 | int tmpHeight = tree0Height; tree0Height = tree1Height; tree1Height = tmpHeight;
|
---|
| 124 | int tmpSize = tree0Size; tree0Size = tree1Size; tree1Size = tmpSize;
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | // select a random suboperator of the 'receiving' tree
|
---|
| 128 | IFunctionTree crossoverPoint = gardener.GetRandomParentNode(tree0);
|
---|
| 129 | int removedBranchIndex;
|
---|
| 130 | IFunctionTree removedBranch;
|
---|
| 131 | IList<IFunction> allowedFunctions;
|
---|
| 132 | if(crossoverPoint == null) {
|
---|
| 133 | removedBranchIndex = 0;
|
---|
| 134 | removedBranch = tree0;
|
---|
| 135 | allowedFunctions = gardener.GetAllowedSubFunctions(null, 0);
|
---|
| 136 | } else {
|
---|
| 137 | removedBranchIndex = random.Next(crossoverPoint.SubTrees.Count);
|
---|
| 138 | removedBranch = crossoverPoint.SubTrees[removedBranchIndex];
|
---|
| 139 | allowedFunctions = gardener.GetAllowedSubFunctions(crossoverPoint.Function, removedBranchIndex);
|
---|
| 140 | }
|
---|
| 141 | int removedBranchSize = removedBranch.Size;
|
---|
| 142 | int maxBranchSize = maxTreeSize - (tree0.Size - removedBranchSize);
|
---|
| 143 | int maxBranchHeight = maxTreeHeight - gardener.GetBranchLevel(tree0, removedBranch);
|
---|
| 144 | List<int> removedBranchThread = GetThread(removedBranch, tree0);
|
---|
| 145 | IFunctionTree insertedBranch = GetReplacementBranch(random, gardener, allowedFunctions, tree1, removedBranchThread, removedBranchSize, maxBranchSize, maxBranchHeight);
|
---|
| 146 |
|
---|
| 147 | int tries = 0;
|
---|
| 148 | while(insertedBranch == null) {
|
---|
| 149 | if(tries++ > MAX_RECOMBINATION_TRIES) {
|
---|
| 150 | if(random.Next() > 0.5) return tree1;
|
---|
| 151 | else return tree0;
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | // retry with a different crossoverPoint
|
---|
| 155 | crossoverPoint = gardener.GetRandomParentNode(tree0);
|
---|
| 156 | if(crossoverPoint == null) {
|
---|
| 157 | removedBranchIndex = 0;
|
---|
| 158 | removedBranch = tree0;
|
---|
| 159 | allowedFunctions = gardener.GetAllowedSubFunctions(null, 0);
|
---|
| 160 | } else {
|
---|
| 161 | removedBranchIndex = random.Next(crossoverPoint.SubTrees.Count);
|
---|
| 162 | removedBranch = crossoverPoint.SubTrees[removedBranchIndex];
|
---|
| 163 | allowedFunctions = gardener.GetAllowedSubFunctions(crossoverPoint.Function, removedBranchIndex);
|
---|
| 164 | }
|
---|
| 165 | removedBranchSize = removedBranch.Size;
|
---|
| 166 | maxBranchSize = maxTreeSize - (tree0.Size - removedBranchSize);
|
---|
| 167 | maxBranchHeight = maxTreeHeight - gardener.GetBranchLevel(tree0, removedBranch) + 1;
|
---|
| 168 | removedBranchThread = GetThread(removedBranch, tree0);
|
---|
| 169 | insertedBranch = GetReplacementBranch(random, gardener, allowedFunctions, tree1, removedBranchThread, removedBranchSize, maxBranchSize, maxBranchHeight);
|
---|
| 170 | }
|
---|
| 171 | if(crossoverPoint != null) {
|
---|
| 172 | // replace the branch below the crossoverpoint with the selected branch from root1
|
---|
| 173 | crossoverPoint.RemoveSubTree(removedBranchIndex);
|
---|
| 174 | crossoverPoint.InsertSubTree(removedBranchIndex, insertedBranch);
|
---|
| 175 | return tree0;
|
---|
| 176 | } else {
|
---|
| 177 | return insertedBranch;
|
---|
| 178 | }
|
---|
| 179 | }
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | private IFunctionTree GetReplacementBranch(IRandom random, TreeGardener gardener, IList<IFunction> allowedFunctions, IFunctionTree tree, List<int> removedBranchThread, int removedBranchSize, int maxBranchSize, int maxBranchHeight) {
|
---|
| 183 | var branches = gardener.GetAllSubTrees(tree).Where(t => allowedFunctions.Contains(t.Function) && t.Size < maxBranchSize && t.Height < maxBranchHeight)
|
---|
| 184 | .Select(t => new { Tree = t, Size = t.Size, Thread = GetThread(t, tree) }).Where(s => s.Size < 2 * removedBranchSize + 1);
|
---|
| 185 |
|
---|
| 186 | var shorterBranches = branches.Where(t => t.Size < removedBranchSize);
|
---|
| 187 | var longerBranches = branches.Where(t => t.Size > removedBranchSize);
|
---|
| 188 | var equalLengthBranches = branches.Where(t => t.Size == removedBranchSize);
|
---|
| 189 |
|
---|
| 190 | if(shorterBranches.Count() == 0 || longerBranches.Count() == 0) {
|
---|
| 191 | if(equalLengthBranches.Count() == 0) {
|
---|
| 192 | return null;
|
---|
| 193 | } else {
|
---|
| 194 | return equalLengthBranches.OrderBy(t => MatchingSteps(removedBranchThread, t.Thread)).Last().Tree;
|
---|
| 195 | }
|
---|
| 196 | } else {
|
---|
| 197 | // invariant: |shorterBranches| > 0 and |longerBranches| > 0
|
---|
| 198 | double pEqualLength = equalLengthBranches.Count() > 0 ? 1.0 / removedBranchSize : 0.0;
|
---|
| 199 | double pLonger = (1.0 - pEqualLength) / (longerBranches.Count() * (1.0 + longerBranches.Average(t => t.Size) / shorterBranches.Average(t => t.Size)));
|
---|
| 200 | double pShorter = (1.0 - pEqualLength - pLonger);
|
---|
| 201 |
|
---|
| 202 | double r = random.NextDouble();
|
---|
| 203 | if(r < pLonger) {
|
---|
| 204 | return longerBranches.OrderBy(t => MatchingSteps(removedBranchThread, t.Thread)).Last().Tree;
|
---|
| 205 | } else if(r < pLonger + pShorter) {
|
---|
| 206 | return shorterBranches.OrderBy(t => MatchingSteps(removedBranchThread, t.Thread)).Last().Tree;
|
---|
| 207 | } else {
|
---|
| 208 | return equalLengthBranches.OrderBy(t => MatchingSteps(removedBranchThread, t.Thread)).Last().Tree;
|
---|
| 209 | }
|
---|
| 210 | }
|
---|
| 211 | }
|
---|
| 212 |
|
---|
| 213 | private int MatchingSteps(List<int> removedBranchThread, List<int> list) {
|
---|
| 214 | int n = Math.Min(removedBranchThread.Count, list.Count);
|
---|
| 215 | for(int i = 0; i < n; i++) if(removedBranchThread[i] != list[i]) return i;
|
---|
| 216 | return n;
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 | private List<int> GetThread(IFunctionTree t, IFunctionTree tree) {
|
---|
| 220 | List<int> thread = new List<int>();
|
---|
| 221 | for(int i = 0; i < tree.SubTrees.Count; i++) {
|
---|
| 222 | if(t == tree.SubTrees[i]) {
|
---|
| 223 | thread.Add(i);
|
---|
| 224 | return thread;
|
---|
| 225 | } else {
|
---|
| 226 | thread.AddRange(GetThread(t, tree.SubTrees[i]));
|
---|
| 227 | if(thread.Count > 0) {
|
---|
| 228 | thread.Insert(0, i);
|
---|
| 229 | return thread;
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 | }
|
---|
| 233 | return thread;
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 |
|
---|
| 237 | // take f and g and create a tree that has f and g as sub-trees
|
---|
| 238 | // example
|
---|
| 239 | // O
|
---|
| 240 | // /|\
|
---|
| 241 | // g 2 f
|
---|
| 242 | //
|
---|
| 243 | private IFunctionTree CombineTerminals(TreeGardener gardener, IFunctionTree f, IFunctionTree g, MersenneTwister random, int maxTreeHeight, out List<IFunctionTree> newBranches) {
|
---|
| 244 | newBranches = new List<IFunctionTree>();
|
---|
| 245 | // determine the set of possible parent functions
|
---|
| 246 | ICollection<IFunction> possibleParents = gardener.GetPossibleParents(new List<IFunction>() { f.Function, g.Function });
|
---|
| 247 | if(possibleParents.Count == 0) throw new InvalidProgramException();
|
---|
| 248 | // and select a random one
|
---|
| 249 | IFunctionTree parent = possibleParents.ElementAt(random.Next(possibleParents.Count())).GetTreeNode();
|
---|
| 250 |
|
---|
| 251 | int nSlots = Math.Max(2, parent.Function.MinArity);
|
---|
| 252 | // determine which slot can take which sub-trees
|
---|
| 253 | List<IFunctionTree>[] slots = new List<IFunctionTree>[nSlots];
|
---|
| 254 | for(int slot = 0; slot < nSlots; slot++) {
|
---|
| 255 | ICollection<IFunction> allowedSubFunctions = gardener.GetAllowedSubFunctions(parent.Function, slot);
|
---|
| 256 | List<IFunctionTree> allowedTrees = new List<IFunctionTree>();
|
---|
| 257 | if(allowedSubFunctions.Contains(f.Function)) allowedTrees.Add(f);
|
---|
| 258 | if(allowedSubFunctions.Contains(g.Function)) allowedTrees.Add(g);
|
---|
| 259 | slots[slot] = allowedTrees;
|
---|
| 260 | }
|
---|
| 261 | // fill the slots in the order of degrees of freedom
|
---|
| 262 | int[] slotSequence = Enumerable.Range(0, slots.Count()).OrderBy(slot => slots[slot].Count()).ToArray();
|
---|
| 263 |
|
---|
| 264 | // tmp arry to store the tree for each sub-tree slot of the parent
|
---|
| 265 | IFunctionTree[] selectedFunctionTrees = new IFunctionTree[nSlots];
|
---|
| 266 |
|
---|
| 267 | // fill the sub-tree slots of the parent starting with the slots that can take potentially both functions (f and g)
|
---|
| 268 | for(int i = 0; i < slotSequence.Length; i++) {
|
---|
| 269 | int slot = slotSequence[i];
|
---|
| 270 | List<IFunctionTree> allowedTrees = slots[slot];
|
---|
| 271 | // when neither f nor g fit into the slot => create a new random tree
|
---|
| 272 | if(allowedTrees.Count() == 0) {
|
---|
| 273 | var allowedFunctions = gardener.GetAllowedSubFunctions(parent.Function, slot);
|
---|
| 274 | selectedFunctionTrees[slot] = gardener.CreateRandomTree(allowedFunctions, 1, 1);
|
---|
| 275 | newBranches.AddRange(gardener.GetAllSubTrees(selectedFunctionTrees[slot]));
|
---|
| 276 | } else {
|
---|
| 277 | // select randomly which tree to insert into this slot
|
---|
| 278 | IFunctionTree selectedTree = allowedTrees[random.Next(allowedTrees.Count())];
|
---|
| 279 | selectedFunctionTrees[slot] = selectedTree;
|
---|
| 280 | // remove the tree that we used in this slot from following function-sets
|
---|
| 281 | for(int j = i + 1; j < slotSequence.Length; j++) {
|
---|
| 282 | int otherSlot = slotSequence[j];
|
---|
| 283 | slots[otherSlot].Remove(selectedTree);
|
---|
| 284 | }
|
---|
| 285 | }
|
---|
| 286 | }
|
---|
| 287 | // actually append the sub-trees to the parent tree
|
---|
| 288 | for(int i = 0; i < selectedFunctionTrees.Length; i++) {
|
---|
| 289 | parent.InsertSubTree(i, selectedFunctionTrees[i]);
|
---|
| 290 | }
|
---|
| 291 |
|
---|
| 292 | return parent;
|
---|
| 293 | }
|
---|
| 294 | }
|
---|
| 295 | }
|
---|