[2447] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.GP.Interfaces;
|
---|
| 27 | using System.IO;
|
---|
| 28 | using System.Diagnostics;
|
---|
| 29 | using HeuristicLab.GP.StructureIdentification;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.GP.Test {
|
---|
| 32 | class SymbolicExpressionImporter {
|
---|
| 33 | private const string DIFFSTART = "dif";
|
---|
| 34 | private const string VARSTART = "var";
|
---|
[2622] | 35 | private const string OPENPARAMSTART = "open-param";
|
---|
[2447] | 36 | private Dictionary<string, IFunction> knownFunctions = new Dictionary<string, IFunction>()
|
---|
| 37 | {
|
---|
| 38 | {"+", new Addition()},
|
---|
| 39 | {"and", new And()},
|
---|
| 40 | {"mean", new Average()},
|
---|
| 41 | {"cos", new Cosinus()},
|
---|
| 42 | {"/", new Division()},
|
---|
| 43 | {"equ", new Equal()},
|
---|
| 44 | {"exp", new Exponential()},
|
---|
| 45 | {">", new GreaterThan()},
|
---|
| 46 | {"if", new IfThenElse()},
|
---|
| 47 | {"<", new LessThan()},
|
---|
| 48 | {"log", new Logarithm()},
|
---|
| 49 | {"*", new Multiplication()},
|
---|
| 50 | {"not", new Not()},
|
---|
| 51 | {"or", new Or()},
|
---|
| 52 | {"expt", new Power()},
|
---|
| 53 | {"sign", new Signum()},
|
---|
| 54 | {"sin",new Sinus()},
|
---|
| 55 | {"sqrt", new Sqrt()},
|
---|
| 56 | {"-", new Subtraction()},
|
---|
| 57 | {"tan", new Tangens()},
|
---|
[2622] | 58 | {"xor", new Xor()},
|
---|
| 59 | {"open-param", new HeuristicLab.GP.StructureIdentification.Networks.OpenParameter()},
|
---|
| 60 | {"open-+", new HeuristicLab.GP.StructureIdentification.Networks.OpenAddition()},
|
---|
| 61 | {"open--", new HeuristicLab.GP.StructureIdentification.Networks.OpenSubtraction()},
|
---|
| 62 | {"open-*", new HeuristicLab.GP.StructureIdentification.Networks.OpenMultiplication()},
|
---|
| 63 | {"open-/", new HeuristicLab.GP.StructureIdentification.Networks.OpenDivision()},
|
---|
[2627] | 64 | {"open-log", new HeuristicLab.GP.StructureIdentification.Networks.OpenLog()},
|
---|
| 65 | {"open-exp", new HeuristicLab.GP.StructureIdentification.Networks.OpenExp()},
|
---|
[2624] | 66 | //{"open-sqr", new HeuristicLab.GP.StructureIdentification.Networks.OpenSqr()},
|
---|
| 67 | //{"open-sqrt", new HeuristicLab.GP.StructureIdentification.Networks.OpenSqrt()},
|
---|
[2622] | 68 | {"f1-+", new HeuristicLab.GP.StructureIdentification.Networks.AdditionF1()},
|
---|
| 69 | {"f1--", new HeuristicLab.GP.StructureIdentification.Networks.SubtractionF1()},
|
---|
| 70 | {"f1-/", new HeuristicLab.GP.StructureIdentification.Networks.DivisionF1()},
|
---|
| 71 | {"f1-*", new HeuristicLab.GP.StructureIdentification.Networks.MultiplicationF1()},
|
---|
| 72 | {"cycle", new HeuristicLab.GP.StructureIdentification.Networks.Cycle()},
|
---|
| 73 | {"flip", new HeuristicLab.GP.StructureIdentification.Networks.Flip()},
|
---|
| 74 |
|
---|
[2447] | 75 | };
|
---|
| 76 | Constant constant = new Constant();
|
---|
| 77 | HeuristicLab.GP.StructureIdentification.Variable variable = new HeuristicLab.GP.StructureIdentification.Variable();
|
---|
| 78 | Differential differential = new Differential();
|
---|
[2622] | 79 | HeuristicLab.GP.StructureIdentification.Networks.OpenParameter openParam = new HeuristicLab.GP.StructureIdentification.Networks.OpenParameter();
|
---|
[2447] | 80 | public SymbolicExpressionImporter() {
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | internal IFunctionTree Import(string str) {
|
---|
| 84 | str = str.Replace("(", " ( ").Replace(")", " ) ");
|
---|
| 85 | return ParseSexp(new Queue<Token>(GetTokenStream(str)));
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | private IEnumerable<Token> GetTokenStream(string str) {
|
---|
| 89 | return
|
---|
| 90 | from strToken in str.Split(new string[] { " " }, StringSplitOptions.RemoveEmptyEntries).AsEnumerable()
|
---|
| 91 | let t = Token.Parse(strToken)
|
---|
| 92 | where t != null
|
---|
| 93 | select t;
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | private HeuristicLab.GP.Interfaces.IFunctionTree ParseSexp(Queue<Token> tokens) {
|
---|
| 97 | if (tokens.Peek().Symbol == TokenSymbol.LPAR) {
|
---|
| 98 | IFunctionTree tree;
|
---|
| 99 | Expect(Token.LPAR, tokens);
|
---|
| 100 | if (tokens.Peek().StringValue.StartsWith(VARSTART)) {
|
---|
| 101 | tree = ParseVariable(tokens);
|
---|
| 102 | } else if (tokens.Peek().StringValue.StartsWith(DIFFSTART)) {
|
---|
| 103 | tree = ParseDifferential(tokens);
|
---|
[2674] | 104 | } else if (tokens.Peek().StringValue.StartsWith(OPENPARAMSTART)) {
|
---|
[2622] | 105 | tree = ParseOpenParameter(tokens);
|
---|
[2447] | 106 | } else {
|
---|
| 107 | Token curToken = tokens.Dequeue();
|
---|
| 108 | tree = CreateTree(curToken);
|
---|
| 109 | while (!tokens.Peek().Equals(Token.RPAR)) {
|
---|
| 110 | tree.AddSubTree(ParseSexp(tokens));
|
---|
| 111 | }
|
---|
| 112 | }
|
---|
| 113 | Expect(Token.RPAR, tokens);
|
---|
| 114 | return tree;
|
---|
| 115 | } else if (tokens.Peek().Symbol == TokenSymbol.NUMBER) {
|
---|
| 116 | ConstantFunctionTree t = (ConstantFunctionTree)constant.GetTreeNode();
|
---|
| 117 | t.Value = tokens.Dequeue().DoubleValue;
|
---|
| 118 | return t;
|
---|
| 119 | } else throw new FormatException("Expected function or constant symbol");
|
---|
| 120 | }
|
---|
| 121 |
|
---|
[2622] | 122 | private IFunctionTree ParseOpenParameter(Queue<Token> tokens) {
|
---|
| 123 | Token tok = tokens.Dequeue();
|
---|
| 124 | Debug.Assert(tok.StringValue == "open-param");
|
---|
[2674] | 125 | HeuristicLab.GP.StructureIdentification.Networks.OpenParameterFunctionTree t = (HeuristicLab.GP.StructureIdentification.Networks.OpenParameterFunctionTree)openParam.GetTreeNode();
|
---|
| 126 | t.Weight = tokens.Dequeue().DoubleValue;
|
---|
[2622] | 127 | t.VariableName = tokens.Dequeue().StringValue;
|
---|
| 128 | t.SampleOffset = (int)tokens.Dequeue().DoubleValue;
|
---|
| 129 | return t;
|
---|
| 130 | }
|
---|
| 131 |
|
---|
[2447] | 132 | private IFunctionTree ParseDifferential(Queue<Token> tokens) {
|
---|
| 133 | Token diffTok = tokens.Dequeue();
|
---|
| 134 | Debug.Assert(diffTok.StringValue == "differential");
|
---|
| 135 | VariableFunctionTree t = (VariableFunctionTree)differential.GetTreeNode();
|
---|
| 136 | t.Weight = tokens.Dequeue().DoubleValue;
|
---|
| 137 | t.VariableName = tokens.Dequeue().StringValue;
|
---|
| 138 | t.SampleOffset = (int)tokens.Dequeue().DoubleValue;
|
---|
| 139 | return t;
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | private IFunctionTree ParseVariable(Queue<Token> tokens) {
|
---|
| 143 | Token varTok = tokens.Dequeue();
|
---|
| 144 | Debug.Assert(varTok.StringValue == "variable");
|
---|
| 145 | VariableFunctionTree t = (VariableFunctionTree)variable.GetTreeNode();
|
---|
| 146 | t.Weight = tokens.Dequeue().DoubleValue;
|
---|
| 147 | t.VariableName = tokens.Dequeue().StringValue;
|
---|
| 148 | t.SampleOffset = (int)tokens.Dequeue().DoubleValue;
|
---|
| 149 | return t;
|
---|
| 150 | }
|
---|
| 151 |
|
---|
| 152 | private IFunctionTree CreateTree(Token token) {
|
---|
| 153 | if (token.Symbol != TokenSymbol.SYMB) throw new FormatException("Expected function symbol, but got: " + token.StringValue);
|
---|
| 154 | return knownFunctions[token.StringValue].GetTreeNode();
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | private void Expect(Token token, Queue<Token> tokens) {
|
---|
| 158 | Token cur = tokens.Dequeue();
|
---|
| 159 | if (!token.Equals(cur)) throw new FormatException("Expected: " + token.StringValue + ", but got found: " + cur.StringValue);
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | }
|
---|