[2616] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.GP.StructureIdentification;
|
---|
| 23 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 24 | using HeuristicLab.DataAnalysis;
|
---|
| 25 | using System;
|
---|
| 26 | using HeuristicLab.GP.Interfaces;
|
---|
| 27 | using HeuristicLab.Random;
|
---|
| 28 | using HeuristicLab.GP.Operators;
|
---|
| 29 | using System.Collections.Generic;
|
---|
| 30 | using System.Text;
|
---|
| 31 | using HeuristicLab.GP.StructureIdentification.Networks;
|
---|
| 32 | using System.Diagnostics;
|
---|
| 33 | namespace HeuristicLab.GP.Test {
|
---|
| 34 |
|
---|
| 35 |
|
---|
| 36 | [TestClass()]
|
---|
| 37 | public class NetworkFunctionLibraryTest {
|
---|
| 38 | private const int N = 1000;
|
---|
| 39 | private TestContext testContextInstance;
|
---|
| 40 | private static IFunctionTree[] randomTrees;
|
---|
| 41 |
|
---|
| 42 | /// <summary>
|
---|
| 43 | ///Gets or sets the test context which provides
|
---|
| 44 | ///information about and functionality for the current test run.
|
---|
| 45 | ///</summary>
|
---|
| 46 | public TestContext TestContext {
|
---|
| 47 | get {
|
---|
| 48 | return testContextInstance;
|
---|
| 49 | }
|
---|
| 50 | set {
|
---|
| 51 | testContextInstance = value;
|
---|
| 52 | }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | [ClassInitialize()]
|
---|
| 56 | public static void CreateRandomNetworks(TestContext testContext) {
|
---|
| 57 | MersenneTwister twister = new MersenneTwister();
|
---|
| 58 | Dataset ds = Util.CreateRandomDataset(twister, 1, 20);
|
---|
[2843] | 59 | randomTrees = Util.CreateRandomTrees(twister, ds, FunctionLibraryInjector.Create(), N, 1, 100);
|
---|
[2616] | 60 | }
|
---|
| 61 |
|
---|
| 62 | [TestMethod()]
|
---|
| 63 | public void NetworkFunctionLibrarySizeDistributionTest() {
|
---|
| 64 | int[] histogram = new int[105 / 5];
|
---|
| 65 | for (int i = 0; i < randomTrees.Length; i++) {
|
---|
| 66 | histogram[randomTrees[i].GetSize() / 5]++;
|
---|
| 67 | }
|
---|
| 68 | StringBuilder strBuilder = new StringBuilder();
|
---|
| 69 | for (int i = 0; i < histogram.Length; i++) {
|
---|
| 70 | strBuilder.Append(Environment.NewLine);
|
---|
| 71 | strBuilder.Append("< "); strBuilder.Append((i + 1) * 5);
|
---|
| 72 | strBuilder.Append(": "); strBuilder.AppendFormat("{0:#0.00%}", histogram[i] / (double)randomTrees.Length);
|
---|
| 73 | }
|
---|
| 74 | Assert.Inconclusive("Size distribution of ProbabilisticTreeCreator: " + strBuilder);
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | [TestMethod()]
|
---|
| 78 | public void NetworkFunctionLibraryFunctionDistributionTest() {
|
---|
| 79 | Dictionary<IFunction, int> occurances = new Dictionary<IFunction, int>();
|
---|
| 80 | double n = 0.0;
|
---|
| 81 | for (int i = 0; i < randomTrees.Length; i++) {
|
---|
| 82 | foreach (var node in FunctionTreeIterator.IteratePrefix(randomTrees[i])) {
|
---|
| 83 | if (node.SubTrees.Count > 0) {
|
---|
| 84 | if (!occurances.ContainsKey(node.Function))
|
---|
| 85 | occurances[node.Function] = 0;
|
---|
| 86 | occurances[node.Function]++;
|
---|
| 87 | n++;
|
---|
| 88 | }
|
---|
| 89 | }
|
---|
| 90 | }
|
---|
| 91 | StringBuilder strBuilder = new StringBuilder();
|
---|
| 92 | foreach (var function in occurances.Keys) {
|
---|
| 93 | strBuilder.Append(Environment.NewLine);
|
---|
| 94 | strBuilder.Append(function.Name); strBuilder.Append(": ");
|
---|
| 95 | strBuilder.AppendFormat("{0:#0.00%}", occurances[function] / n);
|
---|
| 96 | }
|
---|
| 97 | Assert.Inconclusive("Function distribution of ProbabilisticTreeCreator: " + strBuilder);
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | [TestMethod()]
|
---|
| 101 | public void NetworkFunctionLibraryNumberOfSubTreesDistributionTest() {
|
---|
| 102 | Dictionary<int, int> occurances = new Dictionary<int, int>();
|
---|
| 103 | double n = 0.0;
|
---|
| 104 | for (int i = 0; i < randomTrees.Length; i++) {
|
---|
| 105 | foreach (var node in FunctionTreeIterator.IteratePrefix(randomTrees[i])) {
|
---|
| 106 | if (!occurances.ContainsKey(node.SubTrees.Count))
|
---|
| 107 | occurances[node.SubTrees.Count] = 0;
|
---|
| 108 | occurances[node.SubTrees.Count]++;
|
---|
| 109 | n++;
|
---|
| 110 | }
|
---|
| 111 | }
|
---|
| 112 | StringBuilder strBuilder = new StringBuilder();
|
---|
| 113 | foreach (var arity in occurances.Keys) {
|
---|
| 114 | strBuilder.Append(Environment.NewLine);
|
---|
| 115 | strBuilder.Append(arity); strBuilder.Append(": ");
|
---|
| 116 | strBuilder.AppendFormat("{0:#0.00%}", occurances[arity] / n);
|
---|
| 117 | }
|
---|
| 118 | Assert.Inconclusive("Distribution of function arities of ProbabilisticTreeCreator: " + strBuilder);
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 |
|
---|
| 122 | [TestMethod()]
|
---|
| 123 | public void NetworkFunctionLibraryTerminalDistributionTest() {
|
---|
| 124 | Dictionary<IFunction, int> occurances = new Dictionary<IFunction, int>();
|
---|
| 125 | double n = 0.0;
|
---|
| 126 | for (int i = 0; i < randomTrees.Length; i++) {
|
---|
| 127 | foreach (var node in FunctionTreeIterator.IteratePrefix(randomTrees[i])) {
|
---|
| 128 | if (node.SubTrees.Count == 0) {
|
---|
| 129 | if (!occurances.ContainsKey(node.Function))
|
---|
| 130 | occurances[node.Function] = 0;
|
---|
| 131 | occurances[node.Function]++;
|
---|
| 132 | n++;
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 | }
|
---|
| 136 | StringBuilder strBuilder = new StringBuilder();
|
---|
| 137 | foreach (var function in occurances.Keys) {
|
---|
| 138 | strBuilder.Append(Environment.NewLine);
|
---|
| 139 | strBuilder.Append(function.Name); strBuilder.Append(": ");
|
---|
| 140 | strBuilder.AppendFormat("{0:#0.00%}", occurances[function] / n);
|
---|
| 141 | }
|
---|
| 142 | Assert.Inconclusive("Terminal distribution of ProbabilisticTreeCreator: " + strBuilder);
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | [TestMethod()]
|
---|
| 146 | public void NetworkFunctionLibraryOpenParametersDistributionTest() {
|
---|
| 147 | Dictionary<int, int> occurances = new Dictionary<int, int>();
|
---|
| 148 |
|
---|
| 149 | for (int i = 0; i < randomTrees.Length; i++) {
|
---|
| 150 | int nParameters = CountParameters(randomTrees[i]);
|
---|
| 151 |
|
---|
| 152 | if (!occurances.ContainsKey(nParameters))
|
---|
| 153 | occurances[nParameters] = 1;
|
---|
| 154 | occurances[nParameters]++;
|
---|
| 155 | }
|
---|
| 156 | StringBuilder strBuilder = new StringBuilder();
|
---|
| 157 | foreach (var nParameters in occurances.Keys) {
|
---|
| 158 | strBuilder.Append(Environment.NewLine);
|
---|
| 159 | strBuilder.Append(nParameters); strBuilder.Append(": ");
|
---|
| 160 | strBuilder.AppendFormat("{0:#0.00%}", occurances[nParameters] / (double)randomTrees.Length);
|
---|
| 161 | }
|
---|
| 162 | Assert.Inconclusive("Number of parameters distribution of ProbabilisticTreeCreator: " + strBuilder);
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 | private int CountParameters(IFunctionTree tree) {
|
---|
| 166 | if (tree.SubTrees.Count == 0) {
|
---|
| 167 | if (tree.Function is OpenParameter) return 1;
|
---|
| 168 | else return 0;
|
---|
| 169 | } else {
|
---|
| 170 | int n = 0;
|
---|
| 171 | foreach (var subTree in tree.SubTrees) {
|
---|
| 172 | n += CountParameters(subTree);
|
---|
| 173 | }
|
---|
| 174 | return n;
|
---|
| 175 | }
|
---|
| 176 | }
|
---|
| 177 | }
|
---|
| 178 | }
|
---|