Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.GP.Tests/NetworkFunctionLibraryTest.cs @ 3381

Last change on this file since 3381 was 2843, checked in by gkronber, 15 years ago

Removed max. and min. time offset constraints as algorithm parameters and from all engines. The time constraints were added to the relevant terminal symbols (variable & differential) instead. The time offset constraint can be changed by editing the symbols in the function library. #880 (Max and min time offsets for variable symbols are not set correctly by FunctionLibraryInjectors)

File size: 6.8 KB
RevLine 
[2616]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.GP.StructureIdentification;
23using Microsoft.VisualStudio.TestTools.UnitTesting;
24using HeuristicLab.DataAnalysis;
25using System;
26using HeuristicLab.GP.Interfaces;
27using HeuristicLab.Random;
28using HeuristicLab.GP.Operators;
29using System.Collections.Generic;
30using System.Text;
31using HeuristicLab.GP.StructureIdentification.Networks;
32using System.Diagnostics;
33namespace HeuristicLab.GP.Test {
34
35
36  [TestClass()]
37  public class NetworkFunctionLibraryTest {
38    private const int N = 1000;
39    private TestContext testContextInstance;
40    private static IFunctionTree[] randomTrees;
41
42    /// <summary>
43    ///Gets or sets the test context which provides
44    ///information about and functionality for the current test run.
45    ///</summary>
46    public TestContext TestContext {
47      get {
48        return testContextInstance;
49      }
50      set {
51        testContextInstance = value;
52      }
53    }
54
55    [ClassInitialize()]
56    public static void CreateRandomNetworks(TestContext testContext) {
57      MersenneTwister twister = new MersenneTwister();
58      Dataset ds = Util.CreateRandomDataset(twister, 1, 20);
[2843]59      randomTrees = Util.CreateRandomTrees(twister, ds, FunctionLibraryInjector.Create(), N, 1, 100);
[2616]60    }
61
62    [TestMethod()]
63    public void NetworkFunctionLibrarySizeDistributionTest() {
64      int[] histogram = new int[105 / 5];
65      for (int i = 0; i < randomTrees.Length; i++) {
66        histogram[randomTrees[i].GetSize() / 5]++;
67      }
68      StringBuilder strBuilder = new StringBuilder();
69      for (int i = 0; i < histogram.Length; i++) {
70        strBuilder.Append(Environment.NewLine);
71        strBuilder.Append("< "); strBuilder.Append((i + 1) * 5);
72        strBuilder.Append(": "); strBuilder.AppendFormat("{0:#0.00%}", histogram[i] / (double)randomTrees.Length);
73      }
74      Assert.Inconclusive("Size distribution of ProbabilisticTreeCreator: " + strBuilder);
75    }
76
77    [TestMethod()]
78    public void NetworkFunctionLibraryFunctionDistributionTest() {
79      Dictionary<IFunction, int> occurances = new Dictionary<IFunction, int>();
80      double n = 0.0;
81      for (int i = 0; i < randomTrees.Length; i++) {
82        foreach (var node in FunctionTreeIterator.IteratePrefix(randomTrees[i])) {
83          if (node.SubTrees.Count > 0) {
84            if (!occurances.ContainsKey(node.Function))
85              occurances[node.Function] = 0;
86            occurances[node.Function]++;
87            n++;
88          }
89        }
90      }
91      StringBuilder strBuilder = new StringBuilder();
92      foreach (var function in occurances.Keys) {
93        strBuilder.Append(Environment.NewLine);
94        strBuilder.Append(function.Name); strBuilder.Append(": ");
95        strBuilder.AppendFormat("{0:#0.00%}", occurances[function] / n);
96      }
97      Assert.Inconclusive("Function distribution of ProbabilisticTreeCreator: " + strBuilder);
98    }
99
100    [TestMethod()]
101    public void NetworkFunctionLibraryNumberOfSubTreesDistributionTest() {
102      Dictionary<int, int> occurances = new Dictionary<int, int>();
103      double n = 0.0;
104      for (int i = 0; i < randomTrees.Length; i++) {
105        foreach (var node in FunctionTreeIterator.IteratePrefix(randomTrees[i])) {
106          if (!occurances.ContainsKey(node.SubTrees.Count))
107            occurances[node.SubTrees.Count] = 0;
108          occurances[node.SubTrees.Count]++;
109          n++;
110        }
111      }
112      StringBuilder strBuilder = new StringBuilder();
113      foreach (var arity in occurances.Keys) {
114        strBuilder.Append(Environment.NewLine);
115        strBuilder.Append(arity); strBuilder.Append(": ");
116        strBuilder.AppendFormat("{0:#0.00%}", occurances[arity] / n);
117      }
118      Assert.Inconclusive("Distribution of function arities of ProbabilisticTreeCreator: " + strBuilder);
119    }
120
121
122    [TestMethod()]
123    public void NetworkFunctionLibraryTerminalDistributionTest() {
124      Dictionary<IFunction, int> occurances = new Dictionary<IFunction, int>();
125      double n = 0.0;
126      for (int i = 0; i < randomTrees.Length; i++) {
127        foreach (var node in FunctionTreeIterator.IteratePrefix(randomTrees[i])) {
128          if (node.SubTrees.Count == 0) {
129            if (!occurances.ContainsKey(node.Function))
130              occurances[node.Function] = 0;
131            occurances[node.Function]++;
132            n++;
133          }
134        }
135      }
136      StringBuilder strBuilder = new StringBuilder();
137      foreach (var function in occurances.Keys) {
138        strBuilder.Append(Environment.NewLine);
139        strBuilder.Append(function.Name); strBuilder.Append(": ");
140        strBuilder.AppendFormat("{0:#0.00%}", occurances[function] / n);
141      }
142      Assert.Inconclusive("Terminal distribution of ProbabilisticTreeCreator: " + strBuilder);
143    }
144
145    [TestMethod()]
146    public void NetworkFunctionLibraryOpenParametersDistributionTest() {
147      Dictionary<int, int> occurances = new Dictionary<int, int>();
148
149      for (int i = 0; i < randomTrees.Length; i++) {
150        int nParameters = CountParameters(randomTrees[i]);
151
152        if (!occurances.ContainsKey(nParameters))
153          occurances[nParameters] = 1;
154        occurances[nParameters]++;
155      }
156      StringBuilder strBuilder = new StringBuilder();
157      foreach (var nParameters in occurances.Keys) {
158        strBuilder.Append(Environment.NewLine);
159        strBuilder.Append(nParameters); strBuilder.Append(": ");
160        strBuilder.AppendFormat("{0:#0.00%}", occurances[nParameters] / (double)randomTrees.Length);
161      }
162      Assert.Inconclusive("Number of parameters distribution of ProbabilisticTreeCreator: " + strBuilder);
163    }
164
165    private int CountParameters(IFunctionTree tree) {
166      if (tree.SubTrees.Count == 0) {
167        if (tree.Function is OpenParameter) return 1;
168        else return 0;
169      } else {
170        int n = 0;
171        foreach (var subTree in tree.SubTrees) {
172          n += CountParameters(subTree);
173        }
174        return n;
175      }
176    }
177  }
178}
Note: See TracBrowser for help on using the repository browser.