1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using System.Xml;
|
---|
28 | using System.Diagnostics;
|
---|
29 | using HeuristicLab.DataAnalysis;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
33 | /// <summary>
|
---|
34 | /// Base class for tree evaluators
|
---|
35 | /// </summary>
|
---|
36 | public abstract class TreeEvaluatorBase : ItemBase, ITreeEvaluator {
|
---|
37 |
|
---|
38 | protected const double EPSILON = 1.0e-7;
|
---|
39 |
|
---|
40 | [Storable]
|
---|
41 | protected double estimatedValueMax;
|
---|
42 |
|
---|
43 | [Storable]
|
---|
44 | protected double estimatedValueMin;
|
---|
45 |
|
---|
46 | [Storable]
|
---|
47 | protected Dataset dataset;
|
---|
48 |
|
---|
49 | protected class Instr {
|
---|
50 | public double d_arg0;
|
---|
51 | public short i_arg0;
|
---|
52 | public short i_arg1;
|
---|
53 | public byte arity;
|
---|
54 | public byte symbol;
|
---|
55 | public IFunction function;
|
---|
56 | }
|
---|
57 |
|
---|
58 | protected Instr[] codeArr;
|
---|
59 | protected int PC;
|
---|
60 | protected int sampleIndex;
|
---|
61 |
|
---|
62 | public void ResetEvaluator(Dataset dataset, int targetVariable, int start, int end, double punishmentFactor) {
|
---|
63 | this.dataset = dataset;
|
---|
64 | double maximumPunishment = punishmentFactor * dataset.GetRange(targetVariable, start, end);
|
---|
65 |
|
---|
66 | // get the mean of the values of the target variable to determine the max and min bounds of the estimated value
|
---|
67 | double targetMean = dataset.GetMean(targetVariable, start, end);
|
---|
68 | estimatedValueMin = targetMean - maximumPunishment;
|
---|
69 | estimatedValueMax = targetMean + maximumPunishment;
|
---|
70 | }
|
---|
71 |
|
---|
72 | public void PrepareForEvaluation(IFunctionTree functionTree) {
|
---|
73 | BakedFunctionTree bakedTree = functionTree as BakedFunctionTree;
|
---|
74 | if (bakedTree == null) throw new ArgumentException("TreeEvaluators can only evaluate BakedFunctionTrees");
|
---|
75 |
|
---|
76 | List<LightWeightFunction> linearRepresentation = bakedTree.LinearRepresentation;
|
---|
77 | codeArr = new Instr[linearRepresentation.Count];
|
---|
78 | int i = 0;
|
---|
79 | foreach (LightWeightFunction f in linearRepresentation) {
|
---|
80 | codeArr[i++] = TranslateToInstr(f);
|
---|
81 | }
|
---|
82 | }
|
---|
83 |
|
---|
84 | private Instr TranslateToInstr(LightWeightFunction f) {
|
---|
85 | Instr instr = new Instr();
|
---|
86 | instr.arity = f.arity;
|
---|
87 | instr.symbol = EvaluatorSymbolTable.MapFunction(f.functionType);
|
---|
88 | switch (instr.symbol) {
|
---|
89 | case EvaluatorSymbolTable.DIFFERENTIAL:
|
---|
90 | case EvaluatorSymbolTable.VARIABLE: {
|
---|
91 | instr.i_arg0 = (short)f.data[0]; // var
|
---|
92 | instr.d_arg0 = f.data[1]; // weight
|
---|
93 | instr.i_arg1 = (short)f.data[2]; // sample-offset
|
---|
94 | break;
|
---|
95 | }
|
---|
96 | case EvaluatorSymbolTable.CONSTANT: {
|
---|
97 | instr.d_arg0 = f.data[0]; // value
|
---|
98 | break;
|
---|
99 | }
|
---|
100 | case EvaluatorSymbolTable.UNKNOWN: {
|
---|
101 | instr.function = f.functionType;
|
---|
102 | break;
|
---|
103 | }
|
---|
104 | }
|
---|
105 | return instr;
|
---|
106 | }
|
---|
107 |
|
---|
108 | public double Evaluate(int sampleIndex) {
|
---|
109 | PC = 0;
|
---|
110 | this.sampleIndex = sampleIndex;
|
---|
111 |
|
---|
112 | double estimated = EvaluateBakedCode();
|
---|
113 | if (double.IsNaN(estimated) || double.IsInfinity(estimated)) {
|
---|
114 | estimated = estimatedValueMax;
|
---|
115 | } else if (estimated > estimatedValueMax) {
|
---|
116 | estimated = estimatedValueMax;
|
---|
117 | } else if (estimated < estimatedValueMin) {
|
---|
118 | estimated = estimatedValueMin;
|
---|
119 | }
|
---|
120 | return estimated;
|
---|
121 | }
|
---|
122 |
|
---|
123 | // skips a whole branch
|
---|
124 | protected void SkipBakedCode() {
|
---|
125 | int i = 1;
|
---|
126 | while (i > 0) {
|
---|
127 | i += codeArr[PC++].arity;
|
---|
128 | i--;
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|
132 | protected abstract double EvaluateBakedCode();
|
---|
133 |
|
---|
134 | public override object Clone(IDictionary<Guid, object> clonedObjects) {
|
---|
135 | TreeEvaluatorBase clone = (TreeEvaluatorBase)base.Clone(clonedObjects);
|
---|
136 | if (!clonedObjects.ContainsKey(dataset.Guid)) {
|
---|
137 | clone.dataset = (Dataset)dataset.Clone(clonedObjects);
|
---|
138 | } else {
|
---|
139 | clone.dataset = (Dataset)clonedObjects[dataset.Guid];
|
---|
140 | }
|
---|
141 | clone.estimatedValueMax = estimatedValueMax;
|
---|
142 | clone.estimatedValueMin = estimatedValueMin;
|
---|
143 | return clone;
|
---|
144 | }
|
---|
145 | }
|
---|
146 | }
|
---|