[1836] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using System.Xml;
|
---|
| 28 | using System.Diagnostics;
|
---|
| 29 | using HeuristicLab.DataAnalysis;
|
---|
[1914] | 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[1836] | 31 |
|
---|
| 32 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
| 33 | /// <summary>
|
---|
| 34 | /// Base class for tree evaluators
|
---|
| 35 | /// </summary>
|
---|
| 36 | public abstract class TreeEvaluatorBase : ItemBase, ITreeEvaluator {
|
---|
[1914] | 37 |
|
---|
[1836] | 38 | protected const double EPSILON = 1.0e-7;
|
---|
[1914] | 39 |
|
---|
| 40 | [Storable]
|
---|
[1836] | 41 | protected double estimatedValueMax;
|
---|
[1914] | 42 |
|
---|
| 43 | [Storable]
|
---|
[1836] | 44 | protected double estimatedValueMin;
|
---|
| 45 |
|
---|
[1914] | 46 | [Storable]
|
---|
| 47 | protected Dataset dataset;
|
---|
| 48 |
|
---|
[1836] | 49 | protected class Instr {
|
---|
| 50 | public double d_arg0;
|
---|
| 51 | public short i_arg0;
|
---|
| 52 | public short i_arg1;
|
---|
| 53 | public byte arity;
|
---|
| 54 | public byte symbol;
|
---|
| 55 | public IFunction function;
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | protected Instr[] codeArr;
|
---|
| 59 | protected int PC;
|
---|
| 60 | protected int sampleIndex;
|
---|
| 61 |
|
---|
| 62 | public void ResetEvaluator(Dataset dataset, int targetVariable, int start, int end, double punishmentFactor) {
|
---|
| 63 | this.dataset = dataset;
|
---|
| 64 | double maximumPunishment = punishmentFactor * dataset.GetRange(targetVariable, start, end);
|
---|
| 65 |
|
---|
| 66 | // get the mean of the values of the target variable to determine the max and min bounds of the estimated value
|
---|
| 67 | double targetMean = dataset.GetMean(targetVariable, start, end);
|
---|
| 68 | estimatedValueMin = targetMean - maximumPunishment;
|
---|
| 69 | estimatedValueMax = targetMean + maximumPunishment;
|
---|
| 70 | }
|
---|
| 71 |
|
---|
[1891] | 72 | public void PrepareForEvaluation(IFunctionTree functionTree) {
|
---|
| 73 | BakedFunctionTree bakedTree = functionTree as BakedFunctionTree;
|
---|
| 74 | if (bakedTree == null) throw new ArgumentException("TreeEvaluators can only evaluate BakedFunctionTrees");
|
---|
| 75 |
|
---|
| 76 | List<LightWeightFunction> linearRepresentation = bakedTree.LinearRepresentation;
|
---|
| 77 | codeArr = new Instr[linearRepresentation.Count];
|
---|
| 78 | int i = 0;
|
---|
| 79 | foreach (LightWeightFunction f in linearRepresentation) {
|
---|
| 80 | codeArr[i++] = TranslateToInstr(f);
|
---|
| 81 | }
|
---|
| 82 | }
|
---|
| 83 |
|
---|
[1836] | 84 | private Instr TranslateToInstr(LightWeightFunction f) {
|
---|
| 85 | Instr instr = new Instr();
|
---|
| 86 | instr.arity = f.arity;
|
---|
| 87 | instr.symbol = EvaluatorSymbolTable.MapFunction(f.functionType);
|
---|
| 88 | switch (instr.symbol) {
|
---|
| 89 | case EvaluatorSymbolTable.DIFFERENTIAL:
|
---|
| 90 | case EvaluatorSymbolTable.VARIABLE: {
|
---|
| 91 | instr.i_arg0 = (short)f.data[0]; // var
|
---|
| 92 | instr.d_arg0 = f.data[1]; // weight
|
---|
| 93 | instr.i_arg1 = (short)f.data[2]; // sample-offset
|
---|
| 94 | break;
|
---|
| 95 | }
|
---|
| 96 | case EvaluatorSymbolTable.CONSTANT: {
|
---|
| 97 | instr.d_arg0 = f.data[0]; // value
|
---|
| 98 | break;
|
---|
| 99 | }
|
---|
| 100 | case EvaluatorSymbolTable.UNKNOWN: {
|
---|
| 101 | instr.function = f.functionType;
|
---|
| 102 | break;
|
---|
| 103 | }
|
---|
| 104 | }
|
---|
| 105 | return instr;
|
---|
| 106 | }
|
---|
| 107 |
|
---|
[1891] | 108 | public double Evaluate(int sampleIndex) {
|
---|
[1836] | 109 | PC = 0;
|
---|
| 110 | this.sampleIndex = sampleIndex;
|
---|
| 111 |
|
---|
| 112 | double estimated = EvaluateBakedCode();
|
---|
| 113 | if (double.IsNaN(estimated) || double.IsInfinity(estimated)) {
|
---|
| 114 | estimated = estimatedValueMax;
|
---|
| 115 | } else if (estimated > estimatedValueMax) {
|
---|
| 116 | estimated = estimatedValueMax;
|
---|
| 117 | } else if (estimated < estimatedValueMin) {
|
---|
| 118 | estimated = estimatedValueMin;
|
---|
| 119 | }
|
---|
| 120 | return estimated;
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | // skips a whole branch
|
---|
| 124 | protected void SkipBakedCode() {
|
---|
| 125 | int i = 1;
|
---|
| 126 | while (i > 0) {
|
---|
| 127 | i += codeArr[PC++].arity;
|
---|
| 128 | i--;
|
---|
| 129 | }
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | protected abstract double EvaluateBakedCode();
|
---|
| 133 |
|
---|
| 134 | public override object Clone(IDictionary<Guid, object> clonedObjects) {
|
---|
| 135 | TreeEvaluatorBase clone = (TreeEvaluatorBase)base.Clone(clonedObjects);
|
---|
[1873] | 136 | if (!clonedObjects.ContainsKey(dataset.Guid)) {
|
---|
| 137 | clone.dataset = (Dataset)dataset.Clone(clonedObjects);
|
---|
| 138 | } else {
|
---|
| 139 | clone.dataset = (Dataset)clonedObjects[dataset.Guid];
|
---|
| 140 | }
|
---|
[1836] | 141 | clone.estimatedValueMax = estimatedValueMax;
|
---|
| 142 | clone.estimatedValueMin = estimatedValueMin;
|
---|
| 143 | return clone;
|
---|
| 144 | }
|
---|
| 145 | }
|
---|
| 146 | }
|
---|