1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.GP.Interfaces;
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
30 | /// <summary>
|
---|
31 | /// Creates accumulated frequencies of variable-symbols over the whole population.
|
---|
32 | /// </summary>
|
---|
33 | public class VariableFrequencyAnalyser : OperatorBase {
|
---|
34 | public override string Description {
|
---|
35 | get {
|
---|
36 | return @"Creates accumulated frequencies of variable-symbols over the whole population.";
|
---|
37 | }
|
---|
38 | }
|
---|
39 | public VariableFrequencyAnalyser()
|
---|
40 | : base() {
|
---|
41 | AddVariableInfo(new VariableInfo("InputVariables", "The input variables", typeof(ItemList), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("FunctionTree", "The tree to analyse", typeof(IGeneticProgrammingModel), VariableKind.In));
|
---|
43 | AddVariableInfo(new VariableInfo("VariableFrequency", "The accumulated variable-frequencies over the whole population.", typeof(ItemList<ItemList>), VariableKind.New | VariableKind.Out));
|
---|
44 | }
|
---|
45 |
|
---|
46 | public override IOperation Apply(IScope scope) {
|
---|
47 | ItemList<ItemList> frequenciesList = GetVariableValue<ItemList<ItemList>>("VariableFrequency", scope, false, false);
|
---|
48 | ItemList inputVariables = GetVariableValue<ItemList>("InputVariables", scope, true);
|
---|
49 | if (frequenciesList == null) {
|
---|
50 | frequenciesList = new ItemList<ItemList>();
|
---|
51 | // first line should contain a list of variables
|
---|
52 | ItemList varList = new ItemList();
|
---|
53 | foreach (var inputVariable in inputVariables) {
|
---|
54 | varList.Add(inputVariable);
|
---|
55 | }
|
---|
56 | frequenciesList.Add(varList);
|
---|
57 | IVariableInfo info = GetVariableInfo("VariableFrequency");
|
---|
58 | if (info.Local)
|
---|
59 | AddVariable(new HeuristicLab.Core.Variable(info.ActualName, frequenciesList));
|
---|
60 | else
|
---|
61 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(info.FormalName), frequenciesList));
|
---|
62 | }
|
---|
63 | double[] frequencySum = new double[inputVariables.Count()];
|
---|
64 | int variableNodesSum = 0;
|
---|
65 | foreach (var subScope in scope.SubScopes) {
|
---|
66 | IGeneticProgrammingModel gpModel = GetVariableValue<IGeneticProgrammingModel>("FunctionTree", subScope, false);
|
---|
67 | var subScopeFrequencies = GetFrequencies(gpModel.FunctionTree, inputVariables);
|
---|
68 | if (subScopeFrequencies.Count() != frequencySum.Length) throw new InvalidProgramException();
|
---|
69 | int i = 0;
|
---|
70 | foreach (var freq in subScopeFrequencies) {
|
---|
71 | frequencySum[i++] += freq;
|
---|
72 | }
|
---|
73 | variableNodesSum += CountVariableNodes(gpModel.FunctionTree);
|
---|
74 | }
|
---|
75 | ItemList freqList = new ItemList();
|
---|
76 | for (int i = 0; i < frequencySum.Length; i++) {
|
---|
77 | freqList.Add(new DoubleData(frequencySum[i] / variableNodesSum));
|
---|
78 | }
|
---|
79 | frequenciesList.Add(freqList);
|
---|
80 | return null;
|
---|
81 | }
|
---|
82 |
|
---|
83 | private int CountVariableNodes(IFunctionTree tree) {
|
---|
84 | return (from x in FunctionTreeIterator.IteratePostfix(tree)
|
---|
85 | where x is VariableFunctionTree
|
---|
86 | select 1).Sum();
|
---|
87 | }
|
---|
88 |
|
---|
89 | private static IEnumerable<double> GetFrequencies(IFunctionTree tree, ItemList inputVariables) {
|
---|
90 | var groupedFuns = (from node in FunctionTreeIterator.IteratePostfix(tree)
|
---|
91 | let varNode = node as VariableFunctionTree
|
---|
92 | where varNode != null
|
---|
93 | select varNode.VariableName).GroupBy(x => x);
|
---|
94 |
|
---|
95 | foreach (var inputVariable in inputVariables.Cast<StringData>()) {
|
---|
96 | var matchingFuns = from g in groupedFuns
|
---|
97 | where g.Key == inputVariable.Data
|
---|
98 | select g.Count();
|
---|
99 | if (matchingFuns.Count() == 0) yield return 0.0;
|
---|
100 | else {
|
---|
101 | yield return matchingFuns.Single(); // / (double)gpModel.Size;
|
---|
102 | }
|
---|
103 | }
|
---|
104 | }
|
---|
105 | }
|
---|
106 | }
|
---|