[1836] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using System.Xml;
|
---|
| 28 | using System.Diagnostics;
|
---|
| 29 | using HeuristicLab.DataAnalysis;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
| 32 | /// <summary>
|
---|
| 33 | /// Base class for tree evaluators
|
---|
| 34 | /// </summary>
|
---|
| 35 | public abstract class TreeEvaluatorBase : ItemBase, ITreeEvaluator {
|
---|
| 36 | protected const double EPSILON = 1.0e-7;
|
---|
| 37 | protected double estimatedValueMax;
|
---|
| 38 | protected double estimatedValueMin;
|
---|
| 39 |
|
---|
| 40 | protected class Instr {
|
---|
| 41 | public double d_arg0;
|
---|
| 42 | public short i_arg0;
|
---|
| 43 | public short i_arg1;
|
---|
| 44 | public byte arity;
|
---|
| 45 | public byte symbol;
|
---|
| 46 | public IFunction function;
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | protected Instr[] codeArr;
|
---|
| 50 | protected int PC;
|
---|
| 51 | protected Dataset dataset;
|
---|
| 52 | protected int sampleIndex;
|
---|
| 53 |
|
---|
| 54 | public void ResetEvaluator(Dataset dataset, int targetVariable, int start, int end, double punishmentFactor) {
|
---|
| 55 | this.dataset = dataset;
|
---|
| 56 | double maximumPunishment = punishmentFactor * dataset.GetRange(targetVariable, start, end);
|
---|
| 57 |
|
---|
| 58 | // get the mean of the values of the target variable to determine the max and min bounds of the estimated value
|
---|
| 59 | double targetMean = dataset.GetMean(targetVariable, start, end);
|
---|
| 60 | estimatedValueMin = targetMean - maximumPunishment;
|
---|
| 61 | estimatedValueMax = targetMean + maximumPunishment;
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | private Instr TranslateToInstr(LightWeightFunction f) {
|
---|
| 65 | Instr instr = new Instr();
|
---|
| 66 | instr.arity = f.arity;
|
---|
| 67 | instr.symbol = EvaluatorSymbolTable.MapFunction(f.functionType);
|
---|
| 68 | switch (instr.symbol) {
|
---|
| 69 | case EvaluatorSymbolTable.DIFFERENTIAL:
|
---|
| 70 | case EvaluatorSymbolTable.VARIABLE: {
|
---|
| 71 | instr.i_arg0 = (short)f.data[0]; // var
|
---|
| 72 | instr.d_arg0 = f.data[1]; // weight
|
---|
| 73 | instr.i_arg1 = (short)f.data[2]; // sample-offset
|
---|
| 74 | break;
|
---|
| 75 | }
|
---|
| 76 | case EvaluatorSymbolTable.CONSTANT: {
|
---|
| 77 | instr.d_arg0 = f.data[0]; // value
|
---|
| 78 | break;
|
---|
| 79 | }
|
---|
| 80 | case EvaluatorSymbolTable.UNKNOWN: {
|
---|
| 81 | instr.function = f.functionType;
|
---|
| 82 | break;
|
---|
| 83 | }
|
---|
| 84 | }
|
---|
| 85 | return instr;
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | public double Evaluate(IFunctionTree functionTree, int sampleIndex) {
|
---|
| 89 | BakedFunctionTree bakedTree = functionTree as BakedFunctionTree;
|
---|
| 90 | if (bakedTree == null) throw new ArgumentException("TreeEvaluators can only evaluate BakedFunctionTrees");
|
---|
| 91 |
|
---|
| 92 | List<LightWeightFunction> linearRepresentation = bakedTree.LinearRepresentation;
|
---|
| 93 | codeArr = new Instr[linearRepresentation.Count];
|
---|
| 94 | int i = 0;
|
---|
| 95 | foreach (LightWeightFunction f in linearRepresentation) {
|
---|
| 96 | codeArr[i++] = TranslateToInstr(f);
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | PC = 0;
|
---|
| 100 | this.sampleIndex = sampleIndex;
|
---|
| 101 |
|
---|
| 102 | double estimated = EvaluateBakedCode();
|
---|
| 103 | if (double.IsNaN(estimated) || double.IsInfinity(estimated)) {
|
---|
| 104 | estimated = estimatedValueMax;
|
---|
| 105 | } else if (estimated > estimatedValueMax) {
|
---|
| 106 | estimated = estimatedValueMax;
|
---|
| 107 | } else if (estimated < estimatedValueMin) {
|
---|
| 108 | estimated = estimatedValueMin;
|
---|
| 109 | }
|
---|
| 110 | return estimated;
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | // skips a whole branch
|
---|
| 114 | protected void SkipBakedCode() {
|
---|
| 115 | int i = 1;
|
---|
| 116 | while (i > 0) {
|
---|
| 117 | i += codeArr[PC++].arity;
|
---|
| 118 | i--;
|
---|
| 119 | }
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 | protected abstract double EvaluateBakedCode();
|
---|
| 123 |
|
---|
| 124 | public override object Clone(IDictionary<Guid, object> clonedObjects) {
|
---|
| 125 | TreeEvaluatorBase clone = (TreeEvaluatorBase)base.Clone(clonedObjects);
|
---|
| 126 | clone.dataset = (Dataset)dataset.Clone(clonedObjects);
|
---|
| 127 | clone.estimatedValueMax = estimatedValueMax;
|
---|
| 128 | clone.estimatedValueMin = estimatedValueMin;
|
---|
| 129 | return clone;
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary<Guid, IStorable> persistedObjects) {
|
---|
| 133 | XmlNode node = base.GetXmlNode(name, document, persistedObjects);
|
---|
| 134 | XmlAttribute minEstimatedValueAttr = document.CreateAttribute("MinEstimatedValue");
|
---|
| 135 | minEstimatedValueAttr.Value = XmlConvert.ToString(estimatedValueMin);
|
---|
| 136 | node.Attributes.Append(minEstimatedValueAttr);
|
---|
| 137 |
|
---|
| 138 | XmlAttribute maxEstimatedValueAttr = document.CreateAttribute("MaxEstimatedValue");
|
---|
| 139 | maxEstimatedValueAttr.Value = XmlConvert.ToString(estimatedValueMax);
|
---|
| 140 | node.Attributes.Append(maxEstimatedValueAttr);
|
---|
| 141 |
|
---|
| 142 | node.AppendChild(PersistenceManager.Persist("Dataset", dataset, document, persistedObjects));
|
---|
| 143 | return node;
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | public override void Populate(XmlNode node, IDictionary<Guid, IStorable> restoredObjects) {
|
---|
| 147 | base.Populate(node, restoredObjects);
|
---|
| 148 | estimatedValueMax = XmlConvert.ToDouble(node.Attributes["MaxEstimatedValue"].Value);
|
---|
| 149 | estimatedValueMin = XmlConvert.ToDouble(node.Attributes["MinEstimatedValue"].Value);
|
---|
| 150 |
|
---|
| 151 | dataset = (Dataset)PersistenceManager.Restore(node.SelectSingleNode("Dataset"), restoredObjects);
|
---|
| 152 | }
|
---|
| 153 | }
|
---|
| 154 | }
|
---|