Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/PredictorBuilder.cs @ 2356

Last change on this file since 2356 was 2332, checked in by mkommend, 15 years ago

added static method in PredictorBuilder to make it useable from the ModelAnalyzer (ticket #722)

File size: 4.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.GP.Interfaces;
29using HeuristicLab.Modeling;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.GP.StructureIdentification {
33  public class PredictorBuilder : OperatorBase {
34    public PredictorBuilder()
35      : base() {
36      AddVariableInfo(new VariableInfo("FunctionTree", "The function tree", typeof(IGeneticProgrammingModel), VariableKind.In));
37      AddVariableInfo(new VariableInfo("TreeEvaluator", "The tree evaluator used to evaluate the model", typeof(ITreeEvaluator), VariableKind.In));
38      AddVariableInfo(new VariableInfo("PunishmentFactor", "The punishment factor limits the estimated values to a certain range", typeof(DoubleData), VariableKind.In));
39      AddVariableInfo(new VariableInfo("Dataset", "The dataset", typeof(Dataset), VariableKind.In));
40      AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Start index of training set", typeof(DoubleData), VariableKind.In));
41      AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "End index of training set", typeof(DoubleData), VariableKind.In));
42      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the target variable", typeof(IntData), VariableKind.In));
43      AddVariableInfo(new VariableInfo("Predictor", "The predictor combines the function tree and the evaluator and can be used to generate estimated values", typeof(IPredictor), VariableKind.New));
44    }
45
46    public override string Description {
47      get { return "Extracts the function tree and the tree evaluator and combines them to a predictor for the model analyzer."; }
48    }
49
50    public override IOperation Apply(IScope scope) {
51      IGeneticProgrammingModel model = GetVariableValue<IGeneticProgrammingModel>("FunctionTree", scope, true);
52      ITreeEvaluator evaluator = (ITreeEvaluator)GetVariableValue<ITreeEvaluator>("TreeEvaluator", scope, true).Clone();
53      double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
54      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
55      int start = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
56      int end = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
57      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
58      IPredictor predictor = CreatePredictor(model, evaluator, punishmentFactor, dataset, targetVariable, start, end);
59      scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Predictor"), predictor));
60      return null;
61    }
62
63    public static IPredictor CreatePredictor(IGeneticProgrammingModel model, ITreeEvaluator evaluator, double punishmentFactor,
64      Dataset dataset, int targetVariable, int start, int end) {
65      double mean = dataset.GetMean(targetVariable, start, end);
66      double range = dataset.GetRange(targetVariable, start, end);
67      double minEstimatedValue = mean - punishmentFactor * range;
68      double maxEstimatedValue = mean + punishmentFactor * range;
69      return new Predictor(evaluator, model, minEstimatedValue, maxEstimatedValue);
70    }
71
72    public static IPredictor CreatePredictor(IGeneticProgrammingModel model, ITreeEvaluator evaluator, double punishmentFactor,
73      Dataset dataset, string targetVariable, int start, int end) {
74      return CreatePredictor(model, evaluator, punishmentFactor, dataset, dataset.GetVariableIndex(targetVariable), start, end);
75    }
76  }
77}
Note: See TracBrowser for help on using the repository browser.