[2319] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.GP.Interfaces;
|
---|
| 29 | using HeuristicLab.Modeling;
|
---|
[2328] | 30 | using HeuristicLab.DataAnalysis;
|
---|
[2319] | 31 |
|
---|
| 32 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
| 33 | public class PredictorBuilder : OperatorBase {
|
---|
| 34 | public PredictorBuilder()
|
---|
| 35 | : base() {
|
---|
| 36 | AddVariableInfo(new VariableInfo("FunctionTree", "The function tree", typeof(IGeneticProgrammingModel), VariableKind.In));
|
---|
| 37 | AddVariableInfo(new VariableInfo("TreeEvaluator", "The tree evaluator used to evaluate the model", typeof(ITreeEvaluator), VariableKind.In));
|
---|
[2328] | 38 | AddVariableInfo(new VariableInfo("PunishmentFactor", "The punishment factor limits the estimated values to a certain range", typeof(DoubleData), VariableKind.In));
|
---|
| 39 | AddVariableInfo(new VariableInfo("Dataset", "The dataset", typeof(Dataset), VariableKind.In));
|
---|
| 40 | AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Start index of training set", typeof(DoubleData), VariableKind.In));
|
---|
| 41 | AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "End index of training set", typeof(DoubleData), VariableKind.In));
|
---|
[2440] | 42 | AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
|
---|
[2319] | 43 | AddVariableInfo(new VariableInfo("Predictor", "The predictor combines the function tree and the evaluator and can be used to generate estimated values", typeof(IPredictor), VariableKind.New));
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | public override string Description {
|
---|
| 47 | get { return "Extracts the function tree and the tree evaluator and combines them to a predictor for the model analyzer."; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | public override IOperation Apply(IScope scope) {
|
---|
| 51 | IGeneticProgrammingModel model = GetVariableValue<IGeneticProgrammingModel>("FunctionTree", scope, true);
|
---|
[2328] | 52 | ITreeEvaluator evaluator = (ITreeEvaluator)GetVariableValue<ITreeEvaluator>("TreeEvaluator", scope, true).Clone();
|
---|
| 53 | double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
|
---|
| 54 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
| 55 | int start = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
| 56 | int end = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
[2440] | 57 | string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
[2332] | 58 | IPredictor predictor = CreatePredictor(model, evaluator, punishmentFactor, dataset, targetVariable, start, end);
|
---|
| 59 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Predictor"), predictor));
|
---|
| 60 | return null;
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public static IPredictor CreatePredictor(IGeneticProgrammingModel model, ITreeEvaluator evaluator, double punishmentFactor,
|
---|
| 64 | Dataset dataset, int targetVariable, int start, int end) {
|
---|
[2328] | 65 | double mean = dataset.GetMean(targetVariable, start, end);
|
---|
| 66 | double range = dataset.GetRange(targetVariable, start, end);
|
---|
| 67 | double minEstimatedValue = mean - punishmentFactor * range;
|
---|
| 68 | double maxEstimatedValue = mean + punishmentFactor * range;
|
---|
[2332] | 69 | return new Predictor(evaluator, model, minEstimatedValue, maxEstimatedValue);
|
---|
[2319] | 70 | }
|
---|
[2332] | 71 |
|
---|
| 72 | public static IPredictor CreatePredictor(IGeneticProgrammingModel model, ITreeEvaluator evaluator, double punishmentFactor,
|
---|
| 73 | Dataset dataset, string targetVariable, int start, int end) {
|
---|
| 74 | return CreatePredictor(model, evaluator, punishmentFactor, dataset, dataset.GetVariableIndex(targetVariable), start, end);
|
---|
| 75 | }
|
---|
[2319] | 76 | }
|
---|
| 77 | }
|
---|