Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.GP.StructureIdentification/3.3/Predictor.cs @ 2296

Last change on this file since 2296 was 2285, checked in by gkronber, 15 years ago

Worked on #722 (IModel should provide a Predict() method to get predicted values for an input vector).
At the same time removed parameter PunishmentFactor from GP algorithms (this parameter is internal to TreeEvaluators now).

File size: 3.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
25using HeuristicLab.GP.Interfaces;
26using HeuristicLab.GP;
27using HeuristicLab.Modeling;
28using System;
29using System.Xml;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.GP.StructureIdentification {
33  public class Predictor : ItemBase, IPredictor {
34    private ITreeEvaluator treeEvaluator;
35    private IGeneticProgrammingModel functionTree;
36
37    public Predictor() : base() { } // for persistence
38    public Predictor(ITreeEvaluator evaluator, IGeneticProgrammingModel tree)
39      : base() {
40      this.treeEvaluator = evaluator;
41      this.functionTree = tree;
42    }
43
44    public double[] Predict(Dataset input, int start, int end) {
45      if (start < 0 || end <= start) throw new ArgumentException("start must be larger than zero and strictly smaller than end");
46      if (end > input.Rows) throw new ArgumentOutOfRangeException("number of rows in input is smaller then end");
47      treeEvaluator.PrepareForEvaluation(input, functionTree.FunctionTree);
48      double[] result = new double[end - start];
49      for (int i = 0; i < result.Length; i++) {
50        result[i] = treeEvaluator.Evaluate(i + start);
51      }
52      return result;
53    }
54
55    public override IView CreateView() {
56      return functionTree.CreateView();
57    }
58
59    public override object Clone(IDictionary<Guid, object> clonedObjects) {
60      Predictor clone = (Predictor)base.Clone(clonedObjects);
61      clone.treeEvaluator = (ITreeEvaluator)Auxiliary.Clone(treeEvaluator, clonedObjects);
62      clone.functionTree = (IGeneticProgrammingModel)Auxiliary.Clone(functionTree, clonedObjects);
63      return clone;
64    }
65
66    public override System.Xml.XmlNode GetXmlNode(string name, System.Xml.XmlDocument document, IDictionary<Guid, IStorable> persistedObjects) {
67      XmlNode node = base.GetXmlNode(name, document, persistedObjects);
68      node.AppendChild(PersistenceManager.Persist("Evaluator", treeEvaluator, document, persistedObjects));
69      node.AppendChild(PersistenceManager.Persist("FunctionTree", functionTree, document, persistedObjects));
70      return node;
71    }
72
73    public override void Populate(System.Xml.XmlNode node, IDictionary<Guid, IStorable> restoredObjects) {
74      base.Populate(node, restoredObjects);
75      treeEvaluator = (ITreeEvaluator)PersistenceManager.Restore(node.SelectSingleNode("Evaluator"), restoredObjects);
76      functionTree = (IGeneticProgrammingModel)PersistenceManager.Restore(node.SelectSingleNode("FunctionTree"), restoredObjects);
77    }
78  }
79}
Note: See TracBrowser for help on using the repository browser.