1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.GP.Interfaces;
|
---|
26 | using HeuristicLab.GP;
|
---|
27 | using HeuristicLab.Modeling;
|
---|
28 | using System;
|
---|
29 | using System.Xml;
|
---|
30 | using HeuristicLab.DataAnalysis;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
33 | public class Predictor : PredictorBase {
|
---|
34 | private ITreeEvaluator treeEvaluator;
|
---|
35 |
|
---|
36 | private IGeneticProgrammingModel functionTree;
|
---|
37 | public IGeneticProgrammingModel FunctionTree {
|
---|
38 | get { return functionTree; }
|
---|
39 | set { this.functionTree = value; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public Predictor() : base() { } // for persistence
|
---|
43 | public Predictor(ITreeEvaluator evaluator, IGeneticProgrammingModel tree, double lowerPredictionLimit, double upperPredictionLimit)
|
---|
44 | : base(lowerPredictionLimit, upperPredictionLimit) {
|
---|
45 | this.treeEvaluator = evaluator;
|
---|
46 | this.functionTree = tree;
|
---|
47 | }
|
---|
48 |
|
---|
49 | public override double[] Predict(Dataset input, int start, int end) {
|
---|
50 | treeEvaluator.UpperEvaluationLimit = UpperPredictionLimit;
|
---|
51 | treeEvaluator.LowerEvaluationLimit = LowerPredictionLimit;
|
---|
52 |
|
---|
53 | if (start < 0 || end <= start) throw new ArgumentException("start must be larger than zero and strictly smaller than end");
|
---|
54 | if (end > input.Rows) throw new ArgumentOutOfRangeException("number of rows in input is smaller then end");
|
---|
55 | treeEvaluator.PrepareForEvaluation(input, functionTree.FunctionTree);
|
---|
56 | double[] result = new double[end - start];
|
---|
57 | for (int i = 0; i < result.Length; i++) {
|
---|
58 | try {
|
---|
59 | result[i] = treeEvaluator.Evaluate(i + start);
|
---|
60 | }
|
---|
61 | catch (ArgumentException) {
|
---|
62 | result[i] = double.NaN;
|
---|
63 | }
|
---|
64 | }
|
---|
65 | return result;
|
---|
66 | }
|
---|
67 |
|
---|
68 | public override IEnumerable<string> GetInputVariables() {
|
---|
69 | HashSet<string> inputVariables = new HashSet<string>();
|
---|
70 | foreach (IFunctionTree ft in FunctionTreeIterator.IteratePrefix(functionTree.FunctionTree)) {
|
---|
71 | if (ft is VariableFunctionTree) {
|
---|
72 | VariableFunctionTree variable = (VariableFunctionTree)ft;
|
---|
73 | inputVariables.Add(variable.VariableName);
|
---|
74 | }
|
---|
75 | }
|
---|
76 | return inputVariables;
|
---|
77 | }
|
---|
78 |
|
---|
79 | public override IView CreateView() {
|
---|
80 | return new PredictorView(this);
|
---|
81 | }
|
---|
82 |
|
---|
83 | public override object Clone(IDictionary<Guid, object> clonedObjects) {
|
---|
84 | Predictor clone = (Predictor)base.Clone(clonedObjects);
|
---|
85 | clone.treeEvaluator = (ITreeEvaluator)Auxiliary.Clone(treeEvaluator, clonedObjects);
|
---|
86 | clone.functionTree = (IGeneticProgrammingModel)Auxiliary.Clone(functionTree, clonedObjects);
|
---|
87 | return clone;
|
---|
88 | }
|
---|
89 |
|
---|
90 | public override System.Xml.XmlNode GetXmlNode(string name, System.Xml.XmlDocument document, IDictionary<Guid, IStorable> persistedObjects) {
|
---|
91 | XmlNode node = base.GetXmlNode(name, document, persistedObjects);
|
---|
92 | node.AppendChild(PersistenceManager.Persist("Evaluator", treeEvaluator, document, persistedObjects));
|
---|
93 | node.AppendChild(PersistenceManager.Persist("FunctionTree", functionTree, document, persistedObjects));
|
---|
94 | return node;
|
---|
95 | }
|
---|
96 |
|
---|
97 | public override void Populate(System.Xml.XmlNode node, IDictionary<Guid, IStorable> restoredObjects) {
|
---|
98 | base.Populate(node, restoredObjects);
|
---|
99 | treeEvaluator = (ITreeEvaluator)PersistenceManager.Restore(node.SelectSingleNode("Evaluator"), restoredObjects);
|
---|
100 | functionTree = (IGeneticProgrammingModel)PersistenceManager.Restore(node.SelectSingleNode("FunctionTree"), restoredObjects);
|
---|
101 | }
|
---|
102 | }
|
---|
103 | }
|
---|