[1817] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using System.Xml;
|
---|
| 28 | using System.Diagnostics;
|
---|
| 29 | using HeuristicLab.DataAnalysis;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
| 32 | /// <summary>
|
---|
| 33 | /// Evaluates FunctionTrees recursively by interpretation of the function symbols in each node.
|
---|
| 34 | /// Not thread-safe!
|
---|
| 35 | /// </summary>
|
---|
| 36 | public class HL2TreeEvaluator : ItemBase, ITreeEvaluator {
|
---|
| 37 | private const double EPSILON = 1.0e-10;
|
---|
| 38 | private double estimatedValueMax;
|
---|
| 39 | private double estimatedValueMin;
|
---|
| 40 |
|
---|
| 41 | private class Instr {
|
---|
| 42 | public double d_arg0;
|
---|
| 43 | public short i_arg0;
|
---|
| 44 | public short i_arg1;
|
---|
| 45 | public byte arity;
|
---|
| 46 | public byte symbol;
|
---|
| 47 | public IFunction function;
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | private Instr[] codeArr;
|
---|
| 51 | private int PC;
|
---|
| 52 | private Dataset dataset;
|
---|
| 53 | private int sampleIndex;
|
---|
| 54 |
|
---|
| 55 | public void ResetEvaluator(Dataset dataset, int targetVariable, int start, int end, double punishmentFactor) {
|
---|
| 56 | this.dataset = dataset;
|
---|
| 57 | double maximumPunishment = punishmentFactor * dataset.GetRange(targetVariable, start, end);
|
---|
| 58 |
|
---|
| 59 | // get the mean of the values of the target variable to determine the max and min bounds of the estimated value
|
---|
| 60 | double targetMean = dataset.GetMean(targetVariable, start, end);
|
---|
| 61 | estimatedValueMin = targetMean - maximumPunishment;
|
---|
| 62 | estimatedValueMax = targetMean + maximumPunishment;
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | private Instr TranslateToInstr(LightWeightFunction f) {
|
---|
| 66 | Instr instr = new Instr();
|
---|
| 67 | instr.arity = f.arity;
|
---|
| 68 | instr.symbol = EvaluatorSymbolTable.MapFunction(f.functionType);
|
---|
| 69 | switch (instr.symbol) {
|
---|
| 70 | case EvaluatorSymbolTable.DIFFERENTIAL:
|
---|
| 71 | case EvaluatorSymbolTable.VARIABLE: {
|
---|
| 72 | instr.i_arg0 = (short)f.data[0]; // var
|
---|
| 73 | instr.d_arg0 = f.data[1]; // weight
|
---|
| 74 | instr.i_arg1 = (short)f.data[2]; // sample-offset
|
---|
| 75 | break;
|
---|
| 76 | }
|
---|
| 77 | case EvaluatorSymbolTable.CONSTANT: {
|
---|
| 78 | instr.d_arg0 = f.data[0]; // value
|
---|
| 79 | break;
|
---|
| 80 | }
|
---|
| 81 | case EvaluatorSymbolTable.UNKNOWN: {
|
---|
| 82 | instr.function = f.functionType;
|
---|
| 83 | break;
|
---|
| 84 | }
|
---|
| 85 | }
|
---|
| 86 | return instr;
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | public double Evaluate(IFunctionTree functionTree, int sampleIndex) {
|
---|
| 90 | BakedFunctionTree bakedTree = functionTree as BakedFunctionTree;
|
---|
| 91 | if (bakedTree == null) throw new ArgumentException("HL2Evaluator can only evaluate BakedFunctionTrees");
|
---|
| 92 |
|
---|
| 93 | List<LightWeightFunction> linearRepresentation = bakedTree.LinearRepresentation;
|
---|
| 94 | codeArr = new Instr[linearRepresentation.Count];
|
---|
| 95 | int i = 0;
|
---|
| 96 | foreach (LightWeightFunction f in linearRepresentation) {
|
---|
| 97 | codeArr[i++] = TranslateToInstr(f);
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | PC = 0;
|
---|
| 101 | this.sampleIndex = sampleIndex;
|
---|
| 102 |
|
---|
| 103 | double estimated = EvaluateBakedCode();
|
---|
| 104 | if (double.IsNaN(estimated) || double.IsInfinity(estimated)) {
|
---|
| 105 | estimated = estimatedValueMax;
|
---|
| 106 | } else if (estimated > estimatedValueMax) {
|
---|
| 107 | estimated = estimatedValueMax;
|
---|
| 108 | } else if (estimated < estimatedValueMin) {
|
---|
| 109 | estimated = estimatedValueMin;
|
---|
| 110 | }
|
---|
| 111 | return estimated;
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | // skips a whole branch
|
---|
| 115 | private void SkipBakedCode() {
|
---|
| 116 | int i = 1;
|
---|
| 117 | while (i > 0) {
|
---|
| 118 | i += codeArr[PC++].arity;
|
---|
| 119 | i--;
|
---|
| 120 | }
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | private double EvaluateBakedCode() {
|
---|
| 124 | Instr currInstr = codeArr[PC++];
|
---|
| 125 | switch (currInstr.symbol) {
|
---|
| 126 | case EvaluatorSymbolTable.VARIABLE: {
|
---|
| 127 | int row = sampleIndex + currInstr.i_arg1;
|
---|
| 128 | if (row < 0 || row >= dataset.Rows) return double.NaN;
|
---|
| 129 | else return currInstr.d_arg0 * dataset.GetValue(row, currInstr.i_arg0);
|
---|
| 130 | }
|
---|
| 131 | case EvaluatorSymbolTable.CONSTANT: {
|
---|
| 132 | return currInstr.d_arg0;
|
---|
| 133 | }
|
---|
| 134 | case EvaluatorSymbolTable.DIFFERENTIAL: {
|
---|
| 135 | int row = sampleIndex + currInstr.i_arg1;
|
---|
| 136 | if (row < 1 || row >= dataset.Rows) return double.NaN;
|
---|
| 137 | else {
|
---|
| 138 | double prevValue = dataset.GetValue(row - 1, currInstr.i_arg0);
|
---|
| 139 | return currInstr.d_arg0 * (dataset.GetValue(row, currInstr.i_arg0) - prevValue);
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
| 142 | case EvaluatorSymbolTable.MULTIPLICATION: {
|
---|
| 143 | double result = EvaluateBakedCode();
|
---|
| 144 | for (int i = 1; i < currInstr.arity; i++) {
|
---|
| 145 | result *= EvaluateBakedCode();
|
---|
| 146 | }
|
---|
| 147 | return result;
|
---|
| 148 | }
|
---|
| 149 | case EvaluatorSymbolTable.ADDITION: {
|
---|
| 150 | double sum = EvaluateBakedCode();
|
---|
| 151 | for (int i = 1; i < currInstr.arity; i++) {
|
---|
| 152 | sum += EvaluateBakedCode();
|
---|
| 153 | }
|
---|
| 154 | return sum;
|
---|
| 155 | }
|
---|
| 156 | case EvaluatorSymbolTable.SUBTRACTION: {
|
---|
| 157 | return EvaluateBakedCode() - EvaluateBakedCode();
|
---|
| 158 | }
|
---|
| 159 | case EvaluatorSymbolTable.DIVISION: {
|
---|
| 160 | double arg0 = EvaluateBakedCode();
|
---|
| 161 | double arg1 = EvaluateBakedCode();
|
---|
| 162 | if (double.IsNaN(arg0) || double.IsNaN(arg1)) return double.NaN;
|
---|
| 163 | if (Math.Abs(arg1) < (10e-20)) return 0.0; else return (arg0 / arg1);
|
---|
| 164 | }
|
---|
| 165 | case EvaluatorSymbolTable.COSINUS: {
|
---|
| 166 | return Math.Cos(EvaluateBakedCode());
|
---|
| 167 | }
|
---|
| 168 | case EvaluatorSymbolTable.SINUS: {
|
---|
| 169 | return Math.Sin(EvaluateBakedCode());
|
---|
| 170 | }
|
---|
| 171 | case EvaluatorSymbolTable.EXP: {
|
---|
| 172 | return Math.Exp(EvaluateBakedCode());
|
---|
| 173 | }
|
---|
| 174 | case EvaluatorSymbolTable.LOG: {
|
---|
| 175 | return Math.Log(EvaluateBakedCode());
|
---|
| 176 | }
|
---|
| 177 | case EvaluatorSymbolTable.POWER: {
|
---|
| 178 | double x = EvaluateBakedCode();
|
---|
| 179 | double p = EvaluateBakedCode();
|
---|
| 180 | return Math.Pow(x, p);
|
---|
| 181 | }
|
---|
| 182 | case EvaluatorSymbolTable.SIGNUM: {
|
---|
| 183 | double value = EvaluateBakedCode();
|
---|
| 184 | if (double.IsNaN(value)) return double.NaN;
|
---|
| 185 | if (value < 0.0) return -1.0;
|
---|
| 186 | if (value > 0.0) return 1.0;
|
---|
| 187 | return 0.0;
|
---|
| 188 | }
|
---|
| 189 | case EvaluatorSymbolTable.SQRT: {
|
---|
| 190 | return Math.Sqrt(EvaluateBakedCode());
|
---|
| 191 | }
|
---|
| 192 | case EvaluatorSymbolTable.TANGENS: {
|
---|
| 193 | return Math.Tan(EvaluateBakedCode());
|
---|
| 194 | }
|
---|
| 195 | case EvaluatorSymbolTable.AND: { // only defined for inputs 1 and 0
|
---|
| 196 | double result = EvaluateBakedCode();
|
---|
| 197 | bool hasNaNBranch = false;
|
---|
| 198 | for (int i = 1; i < currInstr.arity; i++) {
|
---|
| 199 | if (result < 0.5 || double.IsNaN(result)) hasNaNBranch |= double.IsNaN(EvaluateBakedCode());
|
---|
| 200 | else {
|
---|
| 201 | result = EvaluateBakedCode();
|
---|
| 202 | }
|
---|
| 203 | }
|
---|
| 204 | if (hasNaNBranch || double.IsNaN(result)) return double.NaN;
|
---|
| 205 | if (result < 0.5) return 0.0;
|
---|
| 206 | return 1.0;
|
---|
| 207 | }
|
---|
| 208 | case EvaluatorSymbolTable.EQU: {
|
---|
| 209 | double x = EvaluateBakedCode();
|
---|
| 210 | double y = EvaluateBakedCode();
|
---|
| 211 | if (double.IsNaN(x) || double.IsNaN(y)) return double.NaN;
|
---|
| 212 | // direct comparison of double values is most likely incorrect but
|
---|
| 213 | // that's the way how it is implemented in the standard HL2 function library
|
---|
| 214 | if (x == y) return 1.0; else return 0.0;
|
---|
| 215 | }
|
---|
| 216 | case EvaluatorSymbolTable.GT: {
|
---|
| 217 | double x = EvaluateBakedCode();
|
---|
| 218 | double y = EvaluateBakedCode();
|
---|
| 219 | if (double.IsNaN(x) || double.IsNaN(y)) return double.NaN;
|
---|
| 220 | if (x > y) return 1.0;
|
---|
| 221 | return 0.0;
|
---|
| 222 | }
|
---|
| 223 | case EvaluatorSymbolTable.IFTE: { // only defined for condition 0 or 1
|
---|
| 224 | double condition = EvaluateBakedCode();
|
---|
| 225 | double result;
|
---|
| 226 | bool hasNaNBranch = false;
|
---|
| 227 | if (double.IsNaN(condition)) return double.NaN;
|
---|
| 228 | if (condition > 0.5) {
|
---|
| 229 | result = EvaluateBakedCode(); hasNaNBranch = double.IsNaN(EvaluateBakedCode());
|
---|
| 230 | } else {
|
---|
| 231 | hasNaNBranch = double.IsNaN(EvaluateBakedCode()); result = EvaluateBakedCode();
|
---|
| 232 | }
|
---|
| 233 | if (hasNaNBranch) return double.NaN;
|
---|
| 234 | return result;
|
---|
| 235 | }
|
---|
| 236 | case EvaluatorSymbolTable.LT: {
|
---|
| 237 | double x = EvaluateBakedCode();
|
---|
| 238 | double y = EvaluateBakedCode();
|
---|
| 239 | if (double.IsNaN(x) || double.IsNaN(y)) return double.NaN;
|
---|
| 240 | if (x < y) return 1.0;
|
---|
| 241 | return 0.0;
|
---|
| 242 | }
|
---|
| 243 | case EvaluatorSymbolTable.NOT: { // only defined for inputs 0 or 1
|
---|
| 244 | double result = EvaluateBakedCode();
|
---|
| 245 | if (double.IsNaN(result)) return double.NaN;
|
---|
| 246 | if (result < 0.5) return 1.0;
|
---|
| 247 | return 0.0;
|
---|
| 248 | }
|
---|
| 249 | case EvaluatorSymbolTable.OR: { // only defined for inputs 0 or 1
|
---|
| 250 | double result = EvaluateBakedCode();
|
---|
| 251 | bool hasNaNBranch = false;
|
---|
| 252 | for (int i = 1; i < currInstr.arity; i++) {
|
---|
| 253 | if (double.IsNaN(result) || result > 0.5) hasNaNBranch |= double.IsNaN(EvaluateBakedCode());
|
---|
| 254 | else
|
---|
| 255 | result = EvaluateBakedCode();
|
---|
| 256 | }
|
---|
| 257 | if (hasNaNBranch || double.IsNaN(result)) return double.NaN;
|
---|
| 258 | if (result > 0.5) return 1.0;
|
---|
| 259 | return 0.0;
|
---|
| 260 | }
|
---|
| 261 | default: {
|
---|
| 262 | throw new NotImplementedException();
|
---|
| 263 | }
|
---|
| 264 | }
|
---|
| 265 | }
|
---|
| 266 | }
|
---|
| 267 | }
|
---|