1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Modeling;
|
---|
24 |
|
---|
25 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
26 | /// <summary>
|
---|
27 | /// The Variance Accounted For (VAF) function calculates is computed as
|
---|
28 | /// VAF(y,y') = ( 1 - var(y-y')/var(y) )
|
---|
29 | /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
|
---|
30 | /// </summary>
|
---|
31 | public class VarianceAccountedForEvaluator : SimpleGPEvaluatorBase {
|
---|
32 | public override string OutputVariableName {
|
---|
33 | get {
|
---|
34 | return "VAF";
|
---|
35 | }
|
---|
36 | }
|
---|
37 | public override string Description {
|
---|
38 | get {
|
---|
39 | return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates
|
---|
40 | the variance-accounted-for quality measure for the estimated values vs. the real values of 'TargetVariable'.
|
---|
41 |
|
---|
42 | The Variance Accounted For (VAF) function is computed as
|
---|
43 | VAF(y,y') = ( 1 - var(y-y')/var(y) )
|
---|
44 | where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.";
|
---|
45 | }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public override double Evaluate(double[,] values) {
|
---|
49 | try { return SimpleVarianceAccountedForEvaluator.Calculate(values); }
|
---|
50 | catch (ArgumentException) {
|
---|
51 | return double.NegativeInfinity;
|
---|
52 | }
|
---|
53 | }
|
---|
54 | }
|
---|
55 | }
|
---|