1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Random;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
28 | public class UncertainMeanSquaredErrorEvaluator : MeanSquaredErrorEvaluator {
|
---|
29 | public override string Description {
|
---|
30 | get {
|
---|
31 | return @"Evaluates 'FunctionTree' for all samples of the dataset and calculates the mean-squared-error
|
---|
32 | for the estimated values vs. the real values of 'TargetVariable'.
|
---|
33 | This operator stops the computation as soon as an upper limit for the mean-squared-error is reached.";
|
---|
34 | }
|
---|
35 | }
|
---|
36 |
|
---|
37 | public UncertainMeanSquaredErrorEvaluator()
|
---|
38 | : base() {
|
---|
39 | AddVariableInfo(new VariableInfo("Random", "", typeof(MersenneTwister), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("MinEvaluatedSamples", "", typeof(IntData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("QualityLimit", "The upper limit of the MSE which is used as early stopping criterion.", typeof(DoubleData), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("ConfidenceBounds", "Confidence bounds of the calculated MSE", typeof(DoubleData), VariableKind.New | VariableKind.Out));
|
---|
43 | AddVariableInfo(new VariableInfo("ActuallyEvaluatedSamples", "", typeof(IntData), VariableKind.New | VariableKind.Out));
|
---|
44 | }
|
---|
45 |
|
---|
46 | // evaluates the function-tree for the given target-variable and the whole dataset and returns the MSE
|
---|
47 | public override void Evaluate(IScope scope, ITreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {
|
---|
48 | double qualityLimit = GetVariableValue<DoubleData>("QualityLimit", scope, true).Data;
|
---|
49 | int minSamples = GetVariableValue<IntData>("MinEvaluatedSamples", scope, true).Data;
|
---|
50 | MersenneTwister mt = GetVariableValue<MersenneTwister>("Random", scope, true);
|
---|
51 | DoubleData mse = GetVariableValue<DoubleData>("MSE", scope, false, false);
|
---|
52 | if (mse == null) {
|
---|
53 | mse = new DoubleData();
|
---|
54 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("MSE"), mse));
|
---|
55 | }
|
---|
56 | DoubleData confidenceBounds = GetVariableValue<DoubleData>("ConfidenceBounds", scope, false, false);
|
---|
57 | if (confidenceBounds == null) {
|
---|
58 | confidenceBounds = new DoubleData();
|
---|
59 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("ConfidenceBounds"), confidenceBounds));
|
---|
60 | }
|
---|
61 | IntData evaluatedSamples = GetVariableValue<IntData>("ActuallyEvaluatedSamples", scope, false, false);
|
---|
62 | if (evaluatedSamples == null) {
|
---|
63 | evaluatedSamples = new IntData();
|
---|
64 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("ActuallyEvaluatedSamples"), evaluatedSamples));
|
---|
65 | }
|
---|
66 |
|
---|
67 | int rows = end - start;
|
---|
68 | double mean = 0;
|
---|
69 | double stdDev = 0;
|
---|
70 | double confidenceInterval = 0;
|
---|
71 | double m2 = 0;
|
---|
72 | int[] indexes = InitIndexes(mt, start, end);
|
---|
73 | int n = 0;
|
---|
74 | for (int sample = 0; sample < rows; sample++) {
|
---|
75 | double estimated = evaluator.Evaluate(indexes[sample]);
|
---|
76 | double original = dataset.GetValue(indexes[sample], targetVariable);
|
---|
77 | if (!double.IsNaN(original) && !double.IsInfinity(original)) {
|
---|
78 | n++;
|
---|
79 | double error = estimated - original;
|
---|
80 | double squaredError = error * error;
|
---|
81 | double delta = squaredError - mean;
|
---|
82 | mean = mean + delta / n;
|
---|
83 | m2 = m2 + delta * (squaredError - mean);
|
---|
84 |
|
---|
85 | if (n > minSamples && n % minSamples == 0) {
|
---|
86 | stdDev = Math.Sqrt(Math.Sqrt(m2 / (n - 1)));
|
---|
87 | confidenceInterval = 2.364 * stdDev / Math.Sqrt(n);
|
---|
88 | if (qualityLimit < mean - confidenceInterval || qualityLimit > mean + confidenceInterval) {
|
---|
89 | break;
|
---|
90 | }
|
---|
91 | }
|
---|
92 | }
|
---|
93 | }
|
---|
94 |
|
---|
95 | evaluatedSamples.Data = n;
|
---|
96 | mse.Data = mean;
|
---|
97 | stdDev = Math.Sqrt(Math.Sqrt(m2 / (n - 1)));
|
---|
98 | confidenceBounds.Data = 2.364 * stdDev / Math.Sqrt(n);
|
---|
99 | }
|
---|
100 |
|
---|
101 | private int[] InitIndexes(MersenneTwister mt, int start, int end) {
|
---|
102 | int n = end - start;
|
---|
103 | int[] indexes = new int[n];
|
---|
104 | for (int i = 0; i < n; i++) indexes[i] = i + start;
|
---|
105 | for (int i = 0; i < n - 1; i++) {
|
---|
106 | int j = mt.Next(i, n);
|
---|
107 | int tmp = indexes[j];
|
---|
108 | indexes[j] = indexes[i];
|
---|
109 | indexes[i] = tmp;
|
---|
110 | }
|
---|
111 | return indexes;
|
---|
112 | }
|
---|
113 | }
|
---|
114 | }
|
---|