1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using System.Xml;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.DataAnalysis;
|
---|
29 | using System.Linq;
|
---|
30 | using HeuristicLab.GP.Interfaces;
|
---|
31 | using HeuristicLab.Modeling;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
34 | public class NodeBasedVariableImpactCalculator : OperatorBase {
|
---|
35 |
|
---|
36 | public NodeBasedVariableImpactCalculator()
|
---|
37 | : base() {
|
---|
38 | AddVariableInfo(new VariableInfo("FunctionTree", "The GP model", typeof(IGeneticProgrammingModel), VariableKind.In));
|
---|
39 | AddVariableInfo(new VariableInfo("Dataset", "Dataset", typeof(Dataset), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("TargetVariable", "TargetVariable", typeof(StringData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("InputVariableNames", "Names of used variables in the model (optional)", typeof(ItemList<StringData>), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("SamplesStart", "SamplesStart", typeof(IntData), VariableKind.In));
|
---|
43 | AddVariableInfo(new VariableInfo("SamplesEnd", "SamplesEnd", typeof(IntData), VariableKind.In));
|
---|
44 | AddVariableInfo(new VariableInfo("TreeEvaluator", "Evaluator that should be used for impact calculation", typeof(ITreeEvaluator), VariableKind.In));
|
---|
45 | AddVariableInfo(new VariableInfo(ModelingResult.VariableNodeImpact.ToString(), "Variable impacts", typeof(ItemList), VariableKind.New | VariableKind.Out));
|
---|
46 | }
|
---|
47 |
|
---|
48 | public override string Description {
|
---|
49 | get { return @"Calculates the impact of all allowed input variables on the quality of the model based on node impacts."; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | public override IOperation Apply(IScope scope) {
|
---|
53 | IGeneticProgrammingModel gpModel = GetVariableValue<IGeneticProgrammingModel>("FunctionTree", scope, true);
|
---|
54 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
55 | string targetVariableName = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
56 | int targetVariable = dataset.GetVariableIndex(targetVariableName);
|
---|
57 | ItemList<StringData> inputVariableNames = GetVariableValue<ItemList<StringData>>("InputVariableNames", scope, true, false);
|
---|
58 | ITreeEvaluator evaluator = GetVariableValue<ITreeEvaluator>("TreeEvaluator", scope, true);
|
---|
59 | int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
|
---|
60 | int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
|
---|
61 |
|
---|
62 | Dictionary<string, double> qualityImpacts;
|
---|
63 | if (inputVariableNames == null)
|
---|
64 | qualityImpacts = Calculate(dataset, evaluator, gpModel.FunctionTree, targetVariableName, start, end);
|
---|
65 | else
|
---|
66 | qualityImpacts = Calculate(dataset, evaluator, gpModel.FunctionTree, targetVariableName, inputVariableNames.Select(iv => iv.Data), start, end);
|
---|
67 |
|
---|
68 | ItemList varImpacts = GetVariableValue<ItemList>(ModelingResult.VariableNodeImpact.ToString(), scope, true, false);
|
---|
69 | if (varImpacts == null) {
|
---|
70 | varImpacts = new ItemList();
|
---|
71 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(ModelingResult.VariableNodeImpact.ToString()), varImpacts));
|
---|
72 | }
|
---|
73 |
|
---|
74 | varImpacts.Clear();
|
---|
75 | foreach (KeyValuePair<string, double> p in qualityImpacts) {
|
---|
76 | if (p.Key != targetVariableName) {
|
---|
77 | ItemList row = new ItemList();
|
---|
78 | row.Add(new StringData(p.Key));
|
---|
79 | row.Add(new DoubleData(p.Value));
|
---|
80 | varImpacts.Add(row);
|
---|
81 | }
|
---|
82 | }
|
---|
83 |
|
---|
84 | return null;
|
---|
85 | }
|
---|
86 |
|
---|
87 | public static Dictionary<string, double> Calculate(Dataset dataset, ITreeEvaluator evaluator,
|
---|
88 | IFunctionTree tree, string targetVariableName, int start, int end) {
|
---|
89 | return Calculate(dataset, evaluator, tree, targetVariableName, null, start, end);
|
---|
90 | }
|
---|
91 |
|
---|
92 | public static Dictionary<string, double> Calculate(Dataset dataset, ITreeEvaluator evaluator, IFunctionTree tree, string targetVariableName, IEnumerable<string> inputVariableNames, int start, int end) {
|
---|
93 | Dictionary<string, double> impacts = new Dictionary<string, double>();
|
---|
94 | Dictionary<IFunctionTree, double> nodeImpacts = new Dictionary<IFunctionTree, double>();
|
---|
95 | Dictionary<IFunctionTree, double> nodeReplacementValues = new Dictionary<IFunctionTree, double>();
|
---|
96 | Dictionary<IFunctionTree, IFunctionTree> parent = new Dictionary<IFunctionTree, IFunctionTree>();
|
---|
97 | int targetVariable = dataset.GetVariableIndex(targetVariableName);
|
---|
98 | IEnumerable<string> variables;
|
---|
99 | if (inputVariableNames != null)
|
---|
100 | variables = inputVariableNames;
|
---|
101 | else
|
---|
102 | variables = dataset.VariableNames;
|
---|
103 |
|
---|
104 | parent[tree] = null;
|
---|
105 | foreach (var node in FunctionTreeIterator.IteratePostfix(tree)) {
|
---|
106 | foreach (var subTree in node.SubTrees) {
|
---|
107 | parent[subTree] = node;
|
---|
108 | }
|
---|
109 | nodeReplacementValues[node] = CalculateReplacementValue(dataset, evaluator, node, targetVariable, start, end);
|
---|
110 | }
|
---|
111 |
|
---|
112 | double originalMse = CalculateMSE(dataset, evaluator, tree, targetVariable, start, end);
|
---|
113 | foreach (var node in FunctionTreeIterator.IteratePostfix(tree)) {
|
---|
114 | IFunctionTree newTree = ReplaceBranchInTree(tree, node, nodeReplacementValues[node]);
|
---|
115 | double newMse = CalculateMSE(dataset, evaluator, newTree, targetVariable, start, end);
|
---|
116 | nodeImpacts[node] = newMse / originalMse;
|
---|
117 | }
|
---|
118 |
|
---|
119 |
|
---|
120 | foreach (string variableName in variables) {
|
---|
121 | var matchingNodes = from node in nodeImpacts.Keys
|
---|
122 | where node is VariableFunctionTree && ((VariableFunctionTree)node).VariableName == variableName
|
---|
123 | select node;
|
---|
124 | double maxImpact;
|
---|
125 | if (matchingNodes.Count() > 0) {
|
---|
126 | maxImpact = (from matchingNode in matchingNodes
|
---|
127 | select (from n in AncestorList(matchingNode, parent)
|
---|
128 | select nodeImpacts[n]).Min()).Max();
|
---|
129 | } else {
|
---|
130 | maxImpact = 1.0;
|
---|
131 | }
|
---|
132 |
|
---|
133 | impacts[variableName] = maxImpact;
|
---|
134 | }
|
---|
135 |
|
---|
136 | return impacts;
|
---|
137 | }
|
---|
138 |
|
---|
139 | private static double CalculateMSE(Dataset dataset, ITreeEvaluator evaluator, IFunctionTree tree, int targetVariable, int start, int end) {
|
---|
140 | double[,] values = new double[end - start, 2];
|
---|
141 | evaluator.PrepareForEvaluation(dataset, tree);
|
---|
142 | for (int i = start; i < end; i++) {
|
---|
143 | values[i - start, 0] = dataset.GetValue(i, targetVariable);
|
---|
144 | values[i - start, 1] = evaluator.Evaluate(i);
|
---|
145 | }
|
---|
146 | return SimpleMSEEvaluator.Calculate(values);
|
---|
147 | }
|
---|
148 |
|
---|
149 | private static IEnumerable<IFunctionTree> AncestorList(IFunctionTree node, Dictionary<IFunctionTree, IFunctionTree> parent) {
|
---|
150 | while (node != null) {
|
---|
151 | yield return node;
|
---|
152 | node = parent[node];
|
---|
153 | }
|
---|
154 | }
|
---|
155 |
|
---|
156 | private static double CalculateReplacementValue(Dataset dataset, ITreeEvaluator evaluator, IFunctionTree tree, int targetVariable, int start, int end) {
|
---|
157 | double[] values = new double[end - start];
|
---|
158 | evaluator.PrepareForEvaluation(dataset, tree);
|
---|
159 | for (int i = start; i < end; i++) {
|
---|
160 | values[i - start] = evaluator.Evaluate(i);
|
---|
161 | }
|
---|
162 | return Statistics.Median(values);
|
---|
163 | }
|
---|
164 |
|
---|
165 | private static IFunctionTree ReplaceBranchInTree(IFunctionTree tree, IFunctionTree node, double p) {
|
---|
166 | if (tree == node) return CreateConstantNode(p);
|
---|
167 | List<IFunctionTree> originalSubTrees = new List<IFunctionTree>(tree.SubTrees);
|
---|
168 | while (tree.SubTrees.Count > 0) tree.RemoveSubTree(0);
|
---|
169 | IFunctionTree clonedNode = (IFunctionTree)tree.Clone();
|
---|
170 | for (int i = 0; i < originalSubTrees.Count; i++) {
|
---|
171 | tree.AddSubTree(originalSubTrees[i]);
|
---|
172 | clonedNode.AddSubTree(ReplaceBranchInTree(originalSubTrees[i], node, p));
|
---|
173 | }
|
---|
174 | return clonedNode;
|
---|
175 | }
|
---|
176 |
|
---|
177 | private static IFunctionTree CreateConstantNode(double value) {
|
---|
178 | ConstantFunctionTree constantTree = (ConstantFunctionTree)(new Constant().GetTreeNode());
|
---|
179 | constantTree.Value = value;
|
---|
180 | return (IFunctionTree)constantTree;
|
---|
181 | }
|
---|
182 | }
|
---|
183 | }
|
---|