[651] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Core;
|
---|
| 23 | using HeuristicLab.Data;
|
---|
| 24 | using HeuristicLab.DataAnalysis;
|
---|
[2222] | 25 | using HeuristicLab.GP.Interfaces;
|
---|
[651] | 26 |
|
---|
| 27 | namespace HeuristicLab.GP.StructureIdentification {
|
---|
| 28 | public abstract class GPEvaluatorBase : OperatorBase {
|
---|
| 29 | public GPEvaluatorBase()
|
---|
| 30 | : base() {
|
---|
[1796] | 31 | AddVariableInfo(new VariableInfo("TreeEvaluator", "The evaluator that should be used to evaluate the expression tree", typeof(ITreeEvaluator), VariableKind.In));
|
---|
[2222] | 32 | AddVariableInfo(new VariableInfo("FunctionTree", "The function tree that should be evaluated", typeof(IGeneticProgrammingModel), VariableKind.In));
|
---|
[651] | 33 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
| 34 | AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
|
---|
| 35 | AddVariableInfo(new VariableInfo("PunishmentFactor", "Punishment factor for invalid estimations", typeof(DoubleData), VariableKind.In));
|
---|
| 36 | AddVariableInfo(new VariableInfo("TotalEvaluatedNodes", "Number of evaluated nodes", typeof(DoubleData), VariableKind.In | VariableKind.Out));
|
---|
[2034] | 37 | AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Start index of training samples in dataset", typeof(IntData), VariableKind.In));
|
---|
| 38 | AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "End index of training samples in dataset", typeof(IntData), VariableKind.In));
|
---|
[651] | 39 | AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
| 40 | AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
|
---|
[2130] | 41 | AddVariableInfo(new VariableInfo("UseEstimatedTargetValue", "Wether to use the original (measured) or the estimated (calculated) value for the target variable for autoregressive modelling", typeof(BoolData), VariableKind.In));
|
---|
[651] | 42 | }
|
---|
| 43 |
|
---|
| 44 | public override IOperation Apply(IScope scope) {
|
---|
| 45 | // get all variable values
|
---|
[702] | 46 | int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
|
---|
| 47 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
[2222] | 48 | IGeneticProgrammingModel gpModel = GetVariableValue<IGeneticProgrammingModel>("FunctionTree", scope, true);
|
---|
[702] | 49 | double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
|
---|
| 50 | double totalEvaluatedNodes = scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data;
|
---|
[2034] | 51 | int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
| 52 | int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
[651] | 53 | int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
|
---|
| 54 | int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
|
---|
[702] | 55 | bool useEstimatedValues = GetVariableValue<BoolData>("UseEstimatedTargetValue", scope, true).Data;
|
---|
[1796] | 56 | ITreeEvaluator evaluator = GetVariableValue<ITreeEvaluator>("TreeEvaluator", scope, true);
|
---|
[2222] | 57 | evaluator.PrepareForEvaluation(dataset, targetVariable, trainingStart, trainingEnd, punishmentFactor, gpModel.FunctionTree);
|
---|
[1796] | 58 |
|
---|
[702] | 59 | double[] backupValues = null;
|
---|
[651] | 60 | // prepare for autoregressive modelling by saving the original values of the target-variable to a backup array
|
---|
[712] | 61 | if (useEstimatedValues &&
|
---|
| 62 | (backupValues == null || backupValues.Length != end - start)) {
|
---|
[651] | 63 | backupValues = new double[end - start];
|
---|
[712] | 64 | for (int i = start; i < end; i++) {
|
---|
[651] | 65 | backupValues[i - start] = dataset.GetValue(i, targetVariable);
|
---|
| 66 | }
|
---|
| 67 | }
|
---|
[2038] | 68 | dataset.FireChangeEvents = false;
|
---|
[651] | 69 |
|
---|
[1891] | 70 | Evaluate(scope, evaluator, dataset, targetVariable, start, end, useEstimatedValues);
|
---|
[651] | 71 |
|
---|
| 72 | // restore the values of the target variable from the backup array if necessary
|
---|
[712] | 73 | if (useEstimatedValues) {
|
---|
| 74 | for (int i = start; i < end; i++) {
|
---|
[702] | 75 | dataset.SetValue(i, targetVariable, backupValues[i - start]);
|
---|
| 76 | }
|
---|
[651] | 77 | }
|
---|
[2038] | 78 | dataset.FireChangeEvents = true;
|
---|
| 79 | dataset.FireChanged();
|
---|
[651] | 80 |
|
---|
[702] | 81 | // update the value of total evaluated nodes
|
---|
[2222] | 82 | scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + gpModel.Size * (end - start);
|
---|
[702] | 83 | return null;
|
---|
[651] | 84 | }
|
---|
| 85 |
|
---|
[1891] | 86 | public abstract void Evaluate(IScope scope, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues);
|
---|
[651] | 87 | }
|
---|
| 88 | }
|
---|