1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.GP.StructureIdentification;
|
---|
29 | using HeuristicLab.DataAnalysis;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.GP.StructureIdentification.TimeSeries {
|
---|
32 | public class TheilInequalityCoefficientEvaluator : GPEvaluatorBase {
|
---|
33 | public override string Description {
|
---|
34 | get {
|
---|
35 | return @"Evaluates 'FunctionTree' for all samples of 'Dataset' and calculates
|
---|
36 | the 'Theil inequality coefficient (Theil's U2 not U1!)' of estimated values vs. real values of 'TargetVariable'.
|
---|
37 |
|
---|
38 | U2 = Sqrt(1/N * Sum(P_t - A_t)^2 ) / Sqrt(1/N * Sum(A_t)^2 )
|
---|
39 |
|
---|
40 | where P_t is the predicted change of the target variable and A_t is the measured (original) change.
|
---|
41 | (P_t = y'_t - y_(t-1), A_t = y_t - y_(t-1)).
|
---|
42 |
|
---|
43 | U2 is 0 for a perfect prediction and 1 for the naive model y'_t = y_(t-1). An U2 > 1 means the
|
---|
44 | model is worse than the naive model (=> model is useless).";
|
---|
45 | }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public TheilInequalityCoefficientEvaluator()
|
---|
49 | : base() {
|
---|
50 | AddVariableInfo(new VariableInfo("TheilInequalityCoefficient", "Theil's inequality coefficient (U2) of the model", typeof(DoubleData), VariableKind.New));
|
---|
51 | AddVariableInfo(new VariableInfo("TheilInequalityCoefficientBias", "Bias proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New));
|
---|
52 | AddVariableInfo(new VariableInfo("TheilInequalityCoefficientVariance", "Variance proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New));
|
---|
53 | AddVariableInfo(new VariableInfo("TheilInequalityCoefficientCovariance", "Covariance proportion of Theil's inequality coefficient", typeof(DoubleData), VariableKind.New));
|
---|
54 | }
|
---|
55 |
|
---|
56 | public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues) {
|
---|
57 | #region create result variables
|
---|
58 | DoubleData theilInequaliy = GetVariableValue<DoubleData>("TheilInequalityCoefficient", scope, false, false);
|
---|
59 | if (theilInequaliy == null) {
|
---|
60 | theilInequaliy = new DoubleData();
|
---|
61 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficient"), theilInequaliy));
|
---|
62 | }
|
---|
63 | DoubleData uBias = GetVariableValue<DoubleData>("TheilInequalityCoefficientBias", scope, false, false);
|
---|
64 | if (uBias == null) {
|
---|
65 | uBias = new DoubleData();
|
---|
66 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientBias"), uBias));
|
---|
67 | }
|
---|
68 | DoubleData uVariance = GetVariableValue<DoubleData>("TheilInequalityCoefficientVariance", scope, false, false);
|
---|
69 | if (uVariance == null) {
|
---|
70 | uVariance = new DoubleData();
|
---|
71 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientVariance"), uVariance));
|
---|
72 | }
|
---|
73 | DoubleData uCovariance = GetVariableValue<DoubleData>("TheilInequalityCoefficientCovariance", scope, false, false);
|
---|
74 | if (uCovariance == null) {
|
---|
75 | uCovariance = new DoubleData();
|
---|
76 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficientCovariance"), uCovariance));
|
---|
77 | }
|
---|
78 | #endregion
|
---|
79 |
|
---|
80 | double errorsSquaredSum = 0.0;
|
---|
81 | double originalSquaredSum = 0.0;
|
---|
82 | double[] estimatedChanges = new double[end - start];
|
---|
83 | double[] originalChanges = new double[end - start];
|
---|
84 | int nSamples = 0;
|
---|
85 | for (int sample = start; sample < end; sample++) {
|
---|
86 | double prevValue = dataset.GetValue(sample - 1, targetVariable);
|
---|
87 | double estimatedChange = evaluator.Evaluate(sample) - prevValue;
|
---|
88 | double originalChange = dataset.GetValue(sample, targetVariable) - prevValue;
|
---|
89 | if (updateTargetValues) {
|
---|
90 | dataset.SetValue(sample, targetVariable, estimatedChange + prevValue);
|
---|
91 | }
|
---|
92 | if (!double.IsNaN(originalChange) && !double.IsInfinity(originalChange)) {
|
---|
93 | double error = estimatedChange - originalChange;
|
---|
94 | errorsSquaredSum += error * error;
|
---|
95 | originalSquaredSum += originalChange * originalChange;
|
---|
96 | estimatedChanges[sample - start] = estimatedChange;
|
---|
97 | originalChanges[sample - start] = originalChange;
|
---|
98 | nSamples++;
|
---|
99 | }
|
---|
100 | }
|
---|
101 | double quality = Math.Sqrt(errorsSquaredSum / nSamples) / Math.Sqrt(originalSquaredSum / nSamples);
|
---|
102 | if (double.IsNaN(quality) || double.IsInfinity(quality))
|
---|
103 | quality = double.MaxValue;
|
---|
104 | theilInequaliy.Data = quality; // U2
|
---|
105 |
|
---|
106 | // decomposition into U_bias + U_variance + U_covariance parts
|
---|
107 | double bias = Statistics.Mean(estimatedChanges) - Statistics.Mean(originalChanges);
|
---|
108 | bias *= bias; // squared
|
---|
109 | uBias.Data = bias / (errorsSquaredSum / nSamples);
|
---|
110 |
|
---|
111 | double variance = Statistics.StandardDeviation(estimatedChanges) - Statistics.StandardDeviation(originalChanges);
|
---|
112 | variance *= variance; // squared
|
---|
113 | uVariance.Data = variance / (errorsSquaredSum / nSamples);
|
---|
114 |
|
---|
115 | // all parts add up to one so I don't have to calculate the correlation coefficient for the covariance proportion
|
---|
116 | uCovariance.Data = 1.0 - uBias.Data - uVariance.Data;
|
---|
117 | }
|
---|
118 | }
|
---|
119 | }
|
---|