[1251] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using System.Xml;
|
---|
| 26 | using Core = HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.DataAnalysis;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.GP.StructureIdentification.TimeSeries {
|
---|
[1252] | 32 | public class ProblemInjector : HeuristicLab.GP.StructureIdentification.ProblemInjector {
|
---|
[1251] | 33 |
|
---|
| 34 | public override string Description {
|
---|
| 35 | get {
|
---|
| 36 | return "Problem injector for time series structure identification.";
|
---|
| 37 | }
|
---|
| 38 | }
|
---|
| 39 |
|
---|
[1252] | 40 | public ProblemInjector()
|
---|
[1251] | 41 | : base() {
|
---|
[1287] | 42 | AddVariableInfo(new Core.VariableInfo("Autoregressive", "Autoregressive modelling includes previous values of the target variable to predict future values.", typeof(BoolData), Core.VariableKind.New));
|
---|
| 43 | GetVariableInfo("Autoregressive").Local = true;
|
---|
| 44 | AddVariable(new Core.Variable("Autoregressive", new BoolData()));
|
---|
| 45 |
|
---|
[1251] | 46 | AddVariableInfo(new Core.VariableInfo("MaxTimeOffset", "MaxTimeOffset", typeof(IntData), Core.VariableKind.New));
|
---|
| 47 | GetVariableInfo("MaxTimeOffset").Local = true;
|
---|
| 48 | AddVariable(new Core.Variable("MaxTimeOffset", new IntData(0)));
|
---|
| 49 |
|
---|
| 50 | AddVariableInfo(new Core.VariableInfo("MinTimeOffset", "MinTimeOffset", typeof(IntData), Core.VariableKind.New));
|
---|
| 51 | GetVariableInfo("MinTimeOffset").Local = true;
|
---|
| 52 | AddVariable(new Core.Variable("MinTimeOffset", new IntData(-1)));
|
---|
| 53 | }
|
---|
| 54 | }
|
---|
| 55 | }
|
---|