1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.GP.Interfaces;
|
---|
29 | using HeuristicLab.Modeling;
|
---|
30 | using HeuristicLab.DataAnalysis;
|
---|
31 | using System.Diagnostics;
|
---|
32 | using HeuristicLab.Common;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.GP.StructureIdentification.Networks {
|
---|
35 | public class NetworkToFunctionTransformer : OperatorBase {
|
---|
36 | public NetworkToFunctionTransformer()
|
---|
37 | : base() {
|
---|
38 | AddVariableInfo(new VariableInfo("Network", "The network (open expression)", typeof(IGeneticProgrammingModel), VariableKind.In));
|
---|
39 | AddVariableInfo(new VariableInfo("TargetVariables", "Name of the target variables", typeof(ItemList<StringData>), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("FunctionTree", "The function tree with all targetvaribales", typeof(IGeneticProgrammingModel), VariableKind.New));
|
---|
41 | }
|
---|
42 |
|
---|
43 | public override string Description {
|
---|
44 | get { return "Extracts the network (function tree with unbound parameters) and creates a closed form function tree for each target variable."; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | public override IOperation Apply(IScope scope) {
|
---|
48 | IGeneticProgrammingModel model = GetVariableValue<IGeneticProgrammingModel>("Network", scope, true);
|
---|
49 | ItemList<StringData> targetVariables = GetVariableValue<ItemList<StringData>>("TargetVariables", scope, true);
|
---|
50 | // clear old sub-scopes
|
---|
51 | while (scope.SubScopes.Count > 0) scope.RemoveSubScope(scope.SubScopes[0]);
|
---|
52 |
|
---|
53 | var targetVariableEnumerator = targetVariables.Select(x => x.Data).GetEnumerator();
|
---|
54 | List<IFunctionTree> transformedTrees = new List<IFunctionTree>(Transform(model.FunctionTree, targetVariables.Select(x => x.Data)));
|
---|
55 | // create a new sub-scope for each target variable with the transformed expression
|
---|
56 | foreach (IFunctionTree transformedTree in transformedTrees) {
|
---|
57 | targetVariableEnumerator.MoveNext();
|
---|
58 | Scope exprScope = new Scope();
|
---|
59 | scope.AddSubScope(exprScope);
|
---|
60 | exprScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("FunctionTree"), new GeneticProgrammingModel(transformedTree)));
|
---|
61 | exprScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TargetVariable"), new StringData(targetVariableEnumerator.Current)));
|
---|
62 | Debug.Assert(!(transformedTree is VariableFunctionTree) || ((VariableFunctionTree)transformedTree).VariableName != targetVariableEnumerator.Current);
|
---|
63 | }
|
---|
64 |
|
---|
65 | return null;
|
---|
66 | }
|
---|
67 |
|
---|
68 | private static IEnumerable<IFunctionTree> Transform(IFunctionTree networkDescription, IEnumerable<string> targetVariables) {
|
---|
69 | // bind open parameters of network to target variables
|
---|
70 | //IFunctionTree openExpression = RemoveOpenParameters(networkDescription);
|
---|
71 | IFunctionTree paritallyEvaluatedOpenExpression = ApplyMetaFunctions((IFunctionTree)networkDescription.Clone());
|
---|
72 | IFunctionTree boundExpression = BindVariables(paritallyEvaluatedOpenExpression, targetVariables.GetEnumerator());
|
---|
73 |
|
---|
74 | // create a new sub-scope for each target variable with the transformed expression
|
---|
75 | foreach (var targetVariable in targetVariables) {
|
---|
76 | yield return TransformExpression((IFunctionTree)boundExpression.Clone(), targetVariable, targetVariables.Except(new string[] { targetVariable }));
|
---|
77 | }
|
---|
78 | }
|
---|
79 |
|
---|
80 | /// <summary>
|
---|
81 | /// applies all tree-transforming meta functions (= cycle and flip)
|
---|
82 | /// precondition: root is a F2 function (possibly cycle) and the tree contains 0 or n flip functions, each branch has an openparameter symbol in the bottom left
|
---|
83 | /// postconditon: root is any F2 function (but cycle) and the tree doesn't contains any flips, each branch has an openparameter symbol in the bottom left
|
---|
84 | /// </summary>
|
---|
85 | /// <param name="tree"></param>
|
---|
86 | /// <returns></returns>
|
---|
87 | private static IFunctionTree ApplyMetaFunctions(IFunctionTree tree) {
|
---|
88 | return ApplyFlips(ApplyCycles(tree));
|
---|
89 | }
|
---|
90 |
|
---|
91 | private static IFunctionTree ApplyFlips(IFunctionTree tree) {
|
---|
92 | if (tree.SubTrees.Count == 0) {
|
---|
93 | return tree;
|
---|
94 | } else if (tree.Function is Flip) {
|
---|
95 | var partiallyAppliedBranch = ApplyFlips(tree.SubTrees[0]);
|
---|
96 | if (partiallyAppliedBranch.Function is OpenParameter) {
|
---|
97 | var openParFunTree = (OpenParameterFunctionTree)partiallyAppliedBranch;
|
---|
98 | openParFunTree.Weight = 1.0 / openParFunTree.Weight;
|
---|
99 | return partiallyAppliedBranch;
|
---|
100 | } else return InvertChain(partiallyAppliedBranch);
|
---|
101 | } else {
|
---|
102 | List<IFunctionTree> subTrees = new List<IFunctionTree>(tree.SubTrees);
|
---|
103 | while (tree.SubTrees.Count > 0) tree.RemoveSubTree(0);
|
---|
104 | foreach (var subTree in subTrees) {
|
---|
105 | tree.AddSubTree(ApplyFlips(subTree));
|
---|
106 | }
|
---|
107 | return tree;
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | /// <summary>
|
---|
112 | /// inverts and reverses chain of functions.
|
---|
113 | /// precondition: tree is any F1 non-terminal that ends with an openParameter
|
---|
114 | /// postcondition: tree is inverted and reversed chain of F1 non-terminals and ends with an openparameter.
|
---|
115 | /// </summary>
|
---|
116 | /// <param name="tree"></param>
|
---|
117 | /// <returns></returns>
|
---|
118 | private static IFunctionTree InvertChain(IFunctionTree tree) {
|
---|
119 | List<IFunctionTree> currentChain = new List<IFunctionTree>(IterateChain(tree));
|
---|
120 | // get a list of function trees from bottom to top
|
---|
121 | List<IFunctionTree> reversedChain = new List<IFunctionTree>(currentChain.Reverse<IFunctionTree>().Skip(1));
|
---|
122 | OpenParameterFunctionTree openParam = (OpenParameterFunctionTree)currentChain.Last();
|
---|
123 |
|
---|
124 | // build new tree by inverting every function in the reversed chain and keeping f0 branches untouched.
|
---|
125 | IFunctionTree parent = reversedChain[0];
|
---|
126 | IFunctionTree invParent = GetInvertedFunction(parent.Function).GetTreeNode();
|
---|
127 | for (int j = 1; j < parent.SubTrees.Count; j++) {
|
---|
128 | invParent.AddSubTree(parent.SubTrees[j]);
|
---|
129 | }
|
---|
130 | IFunctionTree root = invParent;
|
---|
131 | for (int i = 1; i < reversedChain.Count(); i++) {
|
---|
132 | IFunctionTree child = reversedChain[i];
|
---|
133 | IFunctionTree invChild = GetInvertedFunction(child.Function).GetTreeNode();
|
---|
134 | invParent.InsertSubTree(0, invChild);
|
---|
135 |
|
---|
136 | parent = child;
|
---|
137 | invParent = invChild;
|
---|
138 | for (int j = 1; j < parent.SubTrees.Count; j++) {
|
---|
139 | invParent.AddSubTree(parent.SubTrees[j]);
|
---|
140 | }
|
---|
141 | }
|
---|
142 | // invert factor of openParam
|
---|
143 | openParam.Weight = 1.0 / openParam.Weight;
|
---|
144 | // append open param at the end
|
---|
145 | invParent.InsertSubTree(0, openParam);
|
---|
146 | return root;
|
---|
147 | }
|
---|
148 |
|
---|
149 | private static IEnumerable<IFunctionTree> IterateChain(IFunctionTree tree) {
|
---|
150 | while (tree.SubTrees.Count > 0) {
|
---|
151 | yield return tree;
|
---|
152 | tree = tree.SubTrees[0];
|
---|
153 | }
|
---|
154 | yield return tree;
|
---|
155 | }
|
---|
156 |
|
---|
157 |
|
---|
158 | private static Dictionary<Type, IFunction> invertedFunction = new Dictionary<Type, IFunction>() {
|
---|
159 | { typeof(AdditionF1), new SubtractionF1() },
|
---|
160 | { typeof(SubtractionF1), new AdditionF1() },
|
---|
161 | { typeof(MultiplicationF1), new DivisionF1() },
|
---|
162 | { typeof(DivisionF1), new MultiplicationF1() },
|
---|
163 | { typeof(OpenLog), new OpenExp() },
|
---|
164 | { typeof(OpenExp), new OpenLog() },
|
---|
165 | //{ typeof(OpenSqr), new OpenSqrt() },
|
---|
166 | //{ typeof(OpenSqrt), new OpenSqr() },
|
---|
167 | { typeof(Flip), new Flip()},
|
---|
168 | { typeof(Addition), new Subtraction()},
|
---|
169 | { typeof(Subtraction), new Addition()},
|
---|
170 | { typeof(Multiplication), new Division()},
|
---|
171 | { typeof(Division), new Multiplication()},
|
---|
172 | { typeof(Exponential), new Logarithm()},
|
---|
173 | { typeof(Logarithm), new Exponential()}
|
---|
174 | };
|
---|
175 | private static IFunction GetInvertedFunction(IFunction function) {
|
---|
176 | return invertedFunction[function.GetType()];
|
---|
177 | }
|
---|
178 |
|
---|
179 | private static IFunctionTree ApplyCycles(IFunctionTree tree) {
|
---|
180 | int nRotations = 0;
|
---|
181 | while (tree.Function is Cycle) {
|
---|
182 | nRotations++;
|
---|
183 | tree = tree.SubTrees[0];
|
---|
184 | }
|
---|
185 | if (nRotations > 0 && nRotations % tree.SubTrees.Count > 0) {
|
---|
186 | IFunctionTree[] subTrees = tree.SubTrees.ToArray();
|
---|
187 | while (tree.SubTrees.Count > 0) tree.RemoveSubTree(0);
|
---|
188 |
|
---|
189 | nRotations = nRotations % subTrees.Length;
|
---|
190 | Array.Reverse(subTrees, 0, nRotations);
|
---|
191 | Array.Reverse(subTrees, nRotations, subTrees.Length - nRotations);
|
---|
192 | Array.Reverse(subTrees, 0, subTrees.Length);
|
---|
193 |
|
---|
194 | for (int i = 0; i < subTrees.Length; i++) {
|
---|
195 | tree.AddSubTree(subTrees[i]);
|
---|
196 | }
|
---|
197 | }
|
---|
198 | return tree;
|
---|
199 | }
|
---|
200 |
|
---|
201 |
|
---|
202 |
|
---|
203 | //private static IFunctionTree AppendLeft(IFunctionTree tree, IFunctionTree node) {
|
---|
204 | // IFunctionTree originalTree = tree;
|
---|
205 | // while (!IsBottomLeft(tree)) tree = tree.SubTrees[0];
|
---|
206 | // tree.InsertSubTree(0, node);
|
---|
207 | // return originalTree;
|
---|
208 | //}
|
---|
209 |
|
---|
210 | private static bool IsBottomLeft(IFunctionTree tree) {
|
---|
211 | if (tree.SubTrees.Count == 0) return true;
|
---|
212 | else if (tree.SubTrees[0].Function is Variable) return true;
|
---|
213 | else if (tree.SubTrees[0].Function is Constant) return true;
|
---|
214 | else return false;
|
---|
215 | }
|
---|
216 |
|
---|
217 | /// <summary>
|
---|
218 | /// recieves a function tree transforms it into a function-tree for the given target variable
|
---|
219 | /// </summary>
|
---|
220 | /// <param name="tree"></param>
|
---|
221 | /// <param name="targetVariable"></param>
|
---|
222 | /// <returns></returns>
|
---|
223 | private static IFunctionTree TransformExpression(IFunctionTree tree, string targetVariable, IEnumerable<string> parameters) {
|
---|
224 | if (tree.Function is Constant) return tree;
|
---|
225 | if (tree.Function is Variable || tree.Function is Differential) {
|
---|
226 | VariableFunctionTree varTree = (VariableFunctionTree)tree;
|
---|
227 | varTree.Weight = 1.0;
|
---|
228 | if (varTree.VariableName == targetVariable) varTree.VariableName = parameters.First();
|
---|
229 | return varTree;
|
---|
230 | }
|
---|
231 | if (tree.Function is Addition || tree.Function is Subtraction ||
|
---|
232 | tree.Function is Multiplication || tree.Function is Division ||
|
---|
233 | tree.Function is Exponential || tree.Function is Logarithm) {
|
---|
234 | var occuringVariables = from x in FunctionTreeIterator.IteratePrefix(tree)
|
---|
235 | where x is VariableFunctionTree
|
---|
236 | let name = ((VariableFunctionTree)x).VariableName
|
---|
237 | select name;
|
---|
238 | var openParameters = (new string[] { targetVariable }).Concat(parameters);
|
---|
239 | var missingVariables = openParameters.Except(occuringVariables);
|
---|
240 | if (missingVariables.Count() > 0) {
|
---|
241 | VariableFunctionTree varTree = (VariableFunctionTree)(new Variable()).GetTreeNode();
|
---|
242 | varTree.VariableName = missingVariables.First();
|
---|
243 | varTree.SampleOffset = 0;
|
---|
244 | varTree.Weight = 1.0;
|
---|
245 | tree = (IFunctionTree)tree.Clone();
|
---|
246 | tree.InsertSubTree(0, varTree);
|
---|
247 | }
|
---|
248 | }
|
---|
249 | int targetIndex = -1;
|
---|
250 | IFunctionTree combinator = null;
|
---|
251 | List<IFunctionTree> subTrees = new List<IFunctionTree>(tree.SubTrees);
|
---|
252 | if (HasTargetVariable(subTrees[0], targetVariable)) {
|
---|
253 | targetIndex = 0;
|
---|
254 | combinator = FunctionFromCombinator(tree).GetTreeNode();
|
---|
255 | } else {
|
---|
256 | for (int i = 1; i < subTrees.Count; i++) {
|
---|
257 | if (HasTargetVariable(subTrees[i], targetVariable)) {
|
---|
258 | targetIndex = i;
|
---|
259 | combinator = GetInvertedFunction(FunctionFromCombinator(tree)).GetTreeNode();
|
---|
260 | break;
|
---|
261 | }
|
---|
262 | }
|
---|
263 | }
|
---|
264 | if (targetIndex == -1) {
|
---|
265 | // target variable was not found
|
---|
266 | return tree;
|
---|
267 | } else {
|
---|
268 | // target variable was found
|
---|
269 | for (int i = 0; i < subTrees.Count; i++) {
|
---|
270 | if (i != targetIndex)
|
---|
271 | combinator.AddSubTree(subTrees[i]);
|
---|
272 | }
|
---|
273 | if (subTrees[targetIndex].Function is Variable) return MakeMultiplication(combinator, 1.0 / GetTargetVariableWeight(subTrees[targetIndex]));
|
---|
274 | else {
|
---|
275 | IFunctionTree bottomLeft;
|
---|
276 | IFunctionTree targetChain = InvertF0Chain(subTrees[targetIndex], out bottomLeft);
|
---|
277 | bottomLeft.InsertSubTree(0, combinator);
|
---|
278 | return MakeMultiplication(targetChain, 1.0 / GetTargetVariableWeight(subTrees[targetIndex]));
|
---|
279 | }
|
---|
280 | }
|
---|
281 | }
|
---|
282 |
|
---|
283 | private static IFunctionTree MakeMultiplication(IFunctionTree tree, double p) {
|
---|
284 | if (p.IsAlmost(1.0)) return tree;
|
---|
285 | var mul = (new Multiplication()).GetTreeNode();
|
---|
286 | var constP = (ConstantFunctionTree)(new Constant()).GetTreeNode();
|
---|
287 | constP.Value = p;
|
---|
288 | mul.AddSubTree(tree);
|
---|
289 | mul.AddSubTree(constP);
|
---|
290 | return mul;
|
---|
291 | }
|
---|
292 |
|
---|
293 | private static double GetTargetVariableWeight(IFunctionTree tree) {
|
---|
294 | while (tree.SubTrees.Count > 0) {
|
---|
295 | tree = tree.SubTrees[0];
|
---|
296 | }
|
---|
297 | return ((VariableFunctionTree)tree).Weight;
|
---|
298 | }
|
---|
299 |
|
---|
300 | // inverts a chain of F0 functions
|
---|
301 | // precondition: left bottom is a variable (the selected target variable)
|
---|
302 | // postcondition: the chain is inverted. the target variable is removed
|
---|
303 | private static IFunctionTree InvertF0Chain(IFunctionTree tree, out IFunctionTree bottomLeft) {
|
---|
304 | List<IFunctionTree> currentChain = IterateChain(tree).ToList();
|
---|
305 |
|
---|
306 | List<IFunctionTree> reversedChain = currentChain.Reverse<IFunctionTree>().Skip(1).ToList();
|
---|
307 |
|
---|
308 | // build new tree by inverting every function in the reversed chain and keeping f0 branches untouched.
|
---|
309 | IFunctionTree parent = reversedChain[0];
|
---|
310 | IFunctionTree invParent = GetInvertedFunction(parent.Function).GetTreeNode();
|
---|
311 | for (int j = 1; j < parent.SubTrees.Count; j++) {
|
---|
312 | invParent.AddSubTree(parent.SubTrees[j]);
|
---|
313 | }
|
---|
314 | IFunctionTree root = invParent;
|
---|
315 | for (int i = 1; i < reversedChain.Count(); i++) {
|
---|
316 | IFunctionTree child = reversedChain[i];
|
---|
317 | IFunctionTree invChild = GetInvertedFunction(child.Function).GetTreeNode();
|
---|
318 | invParent.InsertSubTree(0, invChild);
|
---|
319 | parent = child;
|
---|
320 | invParent = invChild;
|
---|
321 | for (int j = 1; j < parent.SubTrees.Count; j++) {
|
---|
322 | invParent.AddSubTree(parent.SubTrees[j]);
|
---|
323 | }
|
---|
324 | }
|
---|
325 | bottomLeft = invParent;
|
---|
326 | return root;
|
---|
327 | }
|
---|
328 |
|
---|
329 |
|
---|
330 |
|
---|
331 | //private static IFunctionTree InvertCombinator(IFunctionTree tree) {
|
---|
332 | // if (tree.Function is OpenAddition) {
|
---|
333 | // return (new OpenSubtraction()).GetTreeNode();
|
---|
334 | // } else if (tree.Function is OpenSubtraction) {
|
---|
335 | // return (new OpenAddition()).GetTreeNode();
|
---|
336 | // } else if (tree.Function is OpenMultiplication) {
|
---|
337 | // return (new OpenDivision()).GetTreeNode();
|
---|
338 | // } else if (tree.Function is OpenDivision) {
|
---|
339 | // return (new OpenMultiplication()).GetTreeNode();
|
---|
340 | // } else throw new InvalidOperationException();
|
---|
341 | //}
|
---|
342 |
|
---|
343 | private static Dictionary<Type, IFunction> combinatorFunction = new Dictionary<Type, IFunction>() {
|
---|
344 | { typeof(OpenAddition), new Addition()},
|
---|
345 | { typeof(OpenSubtraction), new Subtraction()},
|
---|
346 | { typeof(OpenDivision), new Division()},
|
---|
347 | { typeof(OpenMultiplication), new Multiplication()},
|
---|
348 | { typeof(Addition), new Addition()},
|
---|
349 | { typeof(Subtraction), new Subtraction()},
|
---|
350 | { typeof(Division), new Division()},
|
---|
351 | { typeof(Multiplication), new Multiplication()},
|
---|
352 | { typeof(Logarithm), new Logarithm()},
|
---|
353 | { typeof(Exponential), new Exponential()},
|
---|
354 | };
|
---|
355 | private static IFunction FunctionFromCombinator(IFunctionTree tree) {
|
---|
356 | return combinatorFunction[tree.Function.GetType()];
|
---|
357 | }
|
---|
358 |
|
---|
359 | private static bool HasTargetVariable(IFunctionTree tree, string targetVariable) {
|
---|
360 | if (tree.SubTrees.Count == 0) {
|
---|
361 | var varTree = tree as VariableFunctionTree;
|
---|
362 | if (varTree != null) return varTree.VariableName == targetVariable;
|
---|
363 | else return false;
|
---|
364 | } else return (from x in tree.SubTrees
|
---|
365 | where HasTargetVariable(x, targetVariable)
|
---|
366 | select true).Any();
|
---|
367 | }
|
---|
368 |
|
---|
369 | private static Dictionary<Type, IFunction> closedForm = new Dictionary<Type, IFunction>() {
|
---|
370 | {typeof(OpenAddition), new OpenAddition()},
|
---|
371 | {typeof(OpenSubtraction), new OpenSubtraction()},
|
---|
372 | {typeof(OpenMultiplication), new OpenMultiplication()},
|
---|
373 | {typeof(OpenDivision), new OpenDivision()},
|
---|
374 | {typeof(AdditionF1), new Addition()},
|
---|
375 | {typeof(SubtractionF1), new Subtraction()},
|
---|
376 | {typeof(MultiplicationF1), new Multiplication()},
|
---|
377 | {typeof(DivisionF1), new Division()},
|
---|
378 | {typeof(OpenExp), new Exponential()},
|
---|
379 | {typeof(OpenLog), new Logarithm()},
|
---|
380 | //{typeof(OpenSqr), new Power()},
|
---|
381 | //{typeof(OpenSqrt), new Sqrt()},
|
---|
382 | {typeof(OpenParameter), new Variable()},
|
---|
383 | };
|
---|
384 |
|
---|
385 | /// <summary>
|
---|
386 | /// transforms a tree that contains F2 and F1 functions into a tree composed of F2 and F0 functions.
|
---|
387 | /// precondition: the tree doesn't contains cycle or flip symbols. the tree has openparameters in the bottom left
|
---|
388 | /// postcondition: all F1 and functions are replaced by matching F0 functions
|
---|
389 | /// </summary>
|
---|
390 | /// <param name="tree"></param>
|
---|
391 | /// <param name="targetVariables"></param>
|
---|
392 | /// <returns></returns>
|
---|
393 | private static IFunctionTree BindVariables(IFunctionTree tree, IEnumerator<string> targetVariables) {
|
---|
394 | if (!closedForm.ContainsKey(tree.Function.GetType())) return tree;
|
---|
395 | IFunction matchingFunction = closedForm[tree.Function.GetType()];
|
---|
396 | IFunctionTree matchingTree = matchingFunction.GetTreeNode();
|
---|
397 | if (matchingFunction is Variable) {
|
---|
398 | targetVariables.MoveNext();
|
---|
399 | var varTreeNode = (VariableFunctionTree)matchingTree;
|
---|
400 | varTreeNode.VariableName = targetVariables.Current;
|
---|
401 | varTreeNode.SampleOffset = ((OpenParameterFunctionTree)tree).SampleOffset;
|
---|
402 | varTreeNode.Weight = ((OpenParameterFunctionTree)tree).Weight;
|
---|
403 | return varTreeNode;
|
---|
404 | //} else if (matchingFunction is Power) {
|
---|
405 | // matchingTree.AddSubTree(BindVariables(tree.SubTrees[0], targetVariables));
|
---|
406 | // var const2 = (ConstantFunctionTree)(new Constant()).GetTreeNode();
|
---|
407 | // const2.Value = 2.0;
|
---|
408 | // matchingTree.AddSubTree(const2);
|
---|
409 | } else {
|
---|
410 | foreach (IFunctionTree subTree in tree.SubTrees) {
|
---|
411 | matchingTree.AddSubTree(BindVariables(subTree, targetVariables));
|
---|
412 | }
|
---|
413 | }
|
---|
414 |
|
---|
415 | return matchingTree;
|
---|
416 | }
|
---|
417 | }
|
---|
418 | }
|
---|