[1902] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.DataAnalysis;
|
---|
[2578] | 29 | using HeuristicLab.GP.Interfaces;
|
---|
[1902] | 30 |
|
---|
| 31 | namespace HeuristicLab.GP.StructureIdentification.ConditionalEvaluation {
|
---|
| 32 | public class ConditionalSimpleEvaluator : GPEvaluatorBase {
|
---|
| 33 | public ConditionalSimpleEvaluator()
|
---|
| 34 | : base() {
|
---|
| 35 | AddVariableInfo(new VariableInfo("MaxTimeOffset", "Maximal time offset for all feature", typeof(IntData), VariableKind.In));
|
---|
| 36 | AddVariableInfo(new VariableInfo("MinTimeOffset", "Minimal time offset for all feature", typeof(IntData), VariableKind.In));
|
---|
| 37 | AddVariableInfo(new VariableInfo("ConditionVariable", "Variable index which indicates if the row should be evaluated (0 means do not evaluate, != 0 evaluate)", typeof(IntData), VariableKind.In));
|
---|
| 38 | AddVariableInfo(new VariableInfo("Values", "The values of the target variable as predicted by the model and the original value of the target variable", typeof(ItemList), VariableKind.New | VariableKind.Out));
|
---|
| 39 | }
|
---|
| 40 |
|
---|
[2578] | 41 | public override void Evaluate(IScope scope, IFunctionTree tree, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end) {
|
---|
[1902] | 42 | ItemList values = GetVariableValue<ItemList>("Values", scope, false, false);
|
---|
| 43 | if (values == null) {
|
---|
| 44 | values = new ItemList();
|
---|
| 45 | IVariableInfo info = GetVariableInfo("Values");
|
---|
| 46 | if (info.Local)
|
---|
| 47 | AddVariable(new HeuristicLab.Core.Variable(info.ActualName, values));
|
---|
| 48 | else
|
---|
| 49 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(info.FormalName), values));
|
---|
| 50 | }
|
---|
| 51 | values.Clear();
|
---|
| 52 |
|
---|
| 53 | int maxTimeOffset = GetVariableValue<IntData>("MaxTimeOffset", scope, true).Data;
|
---|
| 54 | int minTimeOffset = GetVariableValue<IntData>("MinTimeOffset", scope, true).Data;
|
---|
| 55 | int conditionVariable = GetVariableValue<IntData>("ConditionVariable", scope, true).Data;
|
---|
| 56 |
|
---|
[2578] | 57 | var rows = from row in Enumerable.Range(start, end - start)
|
---|
| 58 | // check if condition variable is true between sample - minTimeOffset and sample - maxTimeOffset
|
---|
| 59 | // => select rows where the value of the condition variable is different from zero in the whole range
|
---|
| 60 | where (from neighbour in Enumerable.Range(row + minTimeOffset, maxTimeOffset - minTimeOffset)
|
---|
| 61 | let value = dataset.GetValue(neighbour, conditionVariable)
|
---|
| 62 | where value == 0
|
---|
| 63 | select neighbour).Any() == false
|
---|
| 64 | select row;
|
---|
| 65 |
|
---|
| 66 |
|
---|
| 67 | double[] estimatedValues = evaluator.Evaluate(dataset, tree, rows).ToArray();
|
---|
| 68 | double[] originalValues = (from row in rows select dataset.GetValue(row, targetVariable)).ToArray();
|
---|
| 69 | for (int i = 0; i < rows.Count(); i++) {
|
---|
| 70 | ItemList row = new ItemList();
|
---|
| 71 | row.Add(new DoubleData(estimatedValues[i]));
|
---|
| 72 | row.Add(new DoubleData(originalValues[i]));
|
---|
| 73 | values.Add(row);
|
---|
[1902] | 74 | }
|
---|
[2578] | 75 |
|
---|
| 76 | scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data -= (end - start) - rows.Count();
|
---|
[1902] | 77 | }
|
---|
| 78 | }
|
---|
| 79 | }
|
---|