1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.GP.StructureIdentification;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.GP.StructureIdentification.Classification {
|
---|
31 | public class ConfusionMatrixEvaluator : GPClassificationEvaluatorBase {
|
---|
32 | public override string Description {
|
---|
33 | get {
|
---|
34 | return @"Calculates the classifcation matrix of the model.";
|
---|
35 | }
|
---|
36 | }
|
---|
37 |
|
---|
38 | public ConfusionMatrixEvaluator()
|
---|
39 | : base() {
|
---|
40 | AddVariableInfo(new VariableInfo("ConfusionMatrix", "The confusion matrix of the model", typeof(IntMatrixData), VariableKind.New));
|
---|
41 | }
|
---|
42 |
|
---|
43 | public override void Evaluate(IScope scope, BakedTreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) {
|
---|
44 | IntMatrixData matrix = GetVariableValue<IntMatrixData>("ConfusionMatrix", scope, false, false);
|
---|
45 | if(matrix == null) {
|
---|
46 | matrix = new IntMatrixData(new int[classes.Length, classes.Length]);
|
---|
47 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("ConfusionMatrix"), matrix));
|
---|
48 | }
|
---|
49 |
|
---|
50 | int nSamples = end - start;
|
---|
51 | for(int sample = start; sample < end; sample++) {
|
---|
52 | double est = evaluator.Evaluate(sample);
|
---|
53 | double origClass = dataset.GetValue(targetVariable,sample);
|
---|
54 | int estClassIndex = -1;
|
---|
55 | // if estimation is lower than the smallest threshold value -> estimated class is the lower class
|
---|
56 | if(est < thresholds[0]) estClassIndex = 0;
|
---|
57 | // if estimation is larger (or equal) than the largest threshold value -> estimated class is the upper class
|
---|
58 | else if(est >= thresholds[thresholds.Length - 1]) estClassIndex = classes.Length - 1;
|
---|
59 | else {
|
---|
60 | // otherwise the estimated class is the class which upper threshold is larger than the estimated value
|
---|
61 | for(int k = 0; k < thresholds.Length; k++) {
|
---|
62 | if(thresholds[k] > est) {
|
---|
63 | estClassIndex = k;
|
---|
64 | break;
|
---|
65 | }
|
---|
66 | }
|
---|
67 | }
|
---|
68 |
|
---|
69 | // find the first threshold index that is larger to the original value
|
---|
70 | int origClassIndex = classes.Length-1;
|
---|
71 | for(int i = 0; i < thresholds.Length; i++) {
|
---|
72 | if(origClass < thresholds[i]) {
|
---|
73 | origClassIndex = i;
|
---|
74 | break;
|
---|
75 | }
|
---|
76 | }
|
---|
77 | matrix.Data[origClassIndex, estClassIndex]++;
|
---|
78 | }
|
---|
79 | }
|
---|
80 | }
|
---|
81 | }
|
---|