Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.GP.StructureIdentification.Classification/3.3/MulticlassOneVsOneAnalyzer.cs @ 3494

Last change on this file since 3494 was 2440, checked in by gkronber, 15 years ago

Fixed #784 (ProblemInjector should be changed to read variable names instead of indexes for input and target variables)

File size: 6.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
25using HeuristicLab.DataAnalysis;
26using HeuristicLab.GP.Interfaces;
27using HeuristicLab.Common;
28
29namespace HeuristicLab.GP.StructureIdentification.Classification {
30  public class MulticlassOneVsOneAnalyzer : OperatorBase {
31
32    private const string DATASET = "Dataset";
33    private const string TARGETVARIABLE = "TargetVariable";
34    private const string TARGETCLASSVALUES = "TargetClassValues";
35    private const string TRAININGSAMPLESSTART = "TrainingSamplesStart";
36    private const string TRAININGSAMPLESEND = "TrainingSamplesEnd";
37    private const string SAMPLESSTART = "SamplesStart";
38    private const string SAMPLESEND = "SamplesEnd";
39    private const string CLASSAVALUE = "ClassAValue";
40    private const string CLASSBVALUE = "ClassBValue";
41    private const string BESTMODELLSCOPE = "BestValidationSolution";
42    private const string BESTMODELL = "FunctionTree";
43    private const string VOTES = "Votes";
44    private const string ACCURACY = "Accuracy";
45    private const string TREEEVALUATOR = "TreeEvaluator";
46
47    public override string Description {
48      get { return @"TASK"; }
49    }
50
51    public MulticlassOneVsOneAnalyzer()
52      : base() {
53      AddVariableInfo(new VariableInfo(DATASET, "The dataset to use", typeof(Dataset), VariableKind.In));
54      AddVariableInfo(new VariableInfo(TARGETVARIABLE, "Target variable", typeof(StringData), VariableKind.In));
55      AddVariableInfo(new VariableInfo(TARGETCLASSVALUES, "Class values of the target variable in the original dataset", typeof(ItemList<DoubleData>), VariableKind.In));
56      AddVariableInfo(new VariableInfo(CLASSAVALUE, "The original class value of the class A in the subscope", typeof(DoubleData), VariableKind.In));
57      AddVariableInfo(new VariableInfo(CLASSBVALUE, "The original class value of the class B in the subscope", typeof(DoubleData), VariableKind.In));
58      AddVariableInfo(new VariableInfo(SAMPLESSTART, "The start of samples in the original dataset", typeof(IntData), VariableKind.In));
59      AddVariableInfo(new VariableInfo(SAMPLESEND, "The end of samples in the original dataset", typeof(IntData), VariableKind.In));
60      AddVariableInfo(new VariableInfo(BESTMODELLSCOPE, "The variable containing the scope of the model (incl. meta data)", typeof(IScope), VariableKind.In));
61      AddVariableInfo(new VariableInfo(BESTMODELL, "The variable in the scope of the model that contains the actual model", typeof(IGeneticProgrammingModel), VariableKind.In));
62      AddVariableInfo(new VariableInfo(TREEEVALUATOR, "The evaluator to apply to the function tree", typeof(ITreeEvaluator), VariableKind.In));
63      AddVariableInfo(new VariableInfo(VOTES, "Array with the votes for each instance", typeof(IntMatrixData), VariableKind.New));
64      AddVariableInfo(new VariableInfo(ACCURACY, "Accuracy of the one-vs-one multi-cass classifier", typeof(DoubleData), VariableKind.New));
65    }
66
67    public override IOperation Apply(IScope scope) {
68      Dataset dataset = GetVariableValue<Dataset>(DATASET, scope, true);
69      string targetVariable = GetVariableValue<StringData>(TARGETVARIABLE, scope, true).Data;
70      int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
71      int trainingSamplesStart = GetVariableValue<IntData>(TRAININGSAMPLESSTART, scope, true).Data;
72      int trainingSamplesEnd = GetVariableValue<IntData>(TRAININGSAMPLESEND, scope, true).Data;
73      int samplesStart = GetVariableValue<IntData>(SAMPLESSTART, scope, true).Data;
74      int samplesEnd = GetVariableValue<IntData>(SAMPLESEND, scope, true).Data;
75      ItemList<DoubleData> classValues = GetVariableValue<ItemList<DoubleData>>(TARGETCLASSVALUES, scope, true);
76      int[,] votes = new int[samplesEnd - samplesStart, classValues.Count];
77
78      foreach(IScope childScope in scope.SubScopes) {
79        double classAValue = GetVariableValue<DoubleData>(CLASSAVALUE, childScope, true).Data;
80        double classBValue = GetVariableValue<DoubleData>(CLASSBVALUE, childScope, true).Data;
81        IScope bestScope = GetVariableValue<IScope>(BESTMODELLSCOPE, childScope, true);
82        IGeneticProgrammingModel gpModel = GetVariableValue<IGeneticProgrammingModel>(BESTMODELL, bestScope, true);
83
84        ITreeEvaluator evaluator = GetVariableValue<ITreeEvaluator>(TREEEVALUATOR, bestScope, true);
85        evaluator.PrepareForEvaluation(dataset, gpModel.FunctionTree);
86        for(int i = 0; i < (samplesEnd - samplesStart); i++) {
87          double est = evaluator.Evaluate(i + samplesStart);
88          if(est < 0.5) {
89            CastVote(votes, i, classAValue, classValues);
90          } else {
91            CastVote(votes, i, classBValue, classValues);
92          }
93        }
94      }
95
96      int correctlyClassified = 0;
97      for(int i = 0; i < (samplesEnd - samplesStart); i++) {
98        double originalClassValue = dataset.GetValue(i + samplesStart, targetVariableIndex);
99        double estimatedClassValue = classValues[0].Data;
100        int maxVotes = votes[i, 0];
101        int sameVotes = 0;
102        for(int j = 1; j < classValues[j].Data; j++) {
103          if(votes[i, j] > maxVotes) {
104            maxVotes = votes[i, j];
105            estimatedClassValue = classValues[j].Data;
106            sameVotes = 0;
107          } else if(votes[i, j] == maxVotes) {
108            sameVotes++;
109          }
110        }
111        if(originalClassValue.IsAlmost(estimatedClassValue) && sameVotes == 0) correctlyClassified++;
112      }
113
114      double accuracy = correctlyClassified / (double)(samplesEnd - samplesStart);
115
116      scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(VOTES), new IntMatrixData(votes)));
117      scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(ACCURACY), new DoubleData(accuracy)));
118      return null;
119    }
120
121    private void CastVote(int[,] votes, int sample, double votedClass, ItemList<DoubleData> classValues) {
122      for(int i = 0; i < classValues.Count; i++) {
123        if(classValues[i].Data.IsAlmost(votedClass)) votes[sample, i]++;
124      }
125    }
126  }
127}
Note: See TracBrowser for help on using the repository browser.