1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.DataAnalysis;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.GP.StructureIdentification.Classification {
|
---|
30 | public class MulticlassModeller : OperatorBase {
|
---|
31 |
|
---|
32 | private const string DATASET = "Dataset";
|
---|
33 | private const string TARGETVARIABLE = "TargetVariable";
|
---|
34 | private const string TARGETCLASSVALUES = "TargetClassValues";
|
---|
35 | private const string TRAININGSAMPLESSTART = "TrainingSamplesStart";
|
---|
36 | private const string TRAININGSAMPLESEND = "TrainingSamplesEnd";
|
---|
37 | private const string VALIDATIONSAMPLESSTART = "ValidationSamplesStart";
|
---|
38 | private const string VALIDATIONSAMPLESEND = "ValidationSamplesEnd";
|
---|
39 | private const string CLASSAVALUE = "ClassAValue";
|
---|
40 | private const string CLASSBVALUE = "ClassBValue";
|
---|
41 | private const double EPSILON = 1E-6;
|
---|
42 | public override string Description {
|
---|
43 | get { return @"TASK"; }
|
---|
44 | }
|
---|
45 |
|
---|
46 | public MulticlassModeller()
|
---|
47 | : base() {
|
---|
48 | AddVariableInfo(new VariableInfo(DATASET, "The original dataset and the new dataset parts in the newly created subscopes", typeof(Dataset), VariableKind.In));
|
---|
49 | AddVariableInfo(new VariableInfo(TARGETVARIABLE, "TargetVariable", typeof(StringData), VariableKind.In));
|
---|
50 | AddVariableInfo(new VariableInfo(TARGETCLASSVALUES, "Class values of the target variable in the original dataset and in the new dataset parts", typeof(ItemList<DoubleData>), VariableKind.In | VariableKind.New));
|
---|
51 | AddVariableInfo(new VariableInfo(CLASSAVALUE, "The original class value of the new class A", typeof(DoubleData), VariableKind.New));
|
---|
52 | AddVariableInfo(new VariableInfo(CLASSBVALUE, "The original class value of the new class B", typeof(DoubleData), VariableKind.New));
|
---|
53 | AddVariableInfo(new VariableInfo(TRAININGSAMPLESSTART, "The start of training samples in the original dataset and starts of training samples in the new dataset parts", typeof(IntData), VariableKind.In | VariableKind.New));
|
---|
54 | AddVariableInfo(new VariableInfo(TRAININGSAMPLESEND, "The end of training samples in the original dataset and ends of training samples in the new dataset parts", typeof(IntData), VariableKind.In | VariableKind.New));
|
---|
55 | AddVariableInfo(new VariableInfo(VALIDATIONSAMPLESSTART, "The start of validation samples in the original dataset and starts of validation samples in the new dataset parts", typeof(IntData), VariableKind.In | VariableKind.New));
|
---|
56 | AddVariableInfo(new VariableInfo(VALIDATIONSAMPLESEND, "The end of validation samples in the original dataset and ends of validation samples in the new dataset parts", typeof(IntData), VariableKind.In | VariableKind.New));
|
---|
57 | }
|
---|
58 |
|
---|
59 | public override IOperation Apply(IScope scope) {
|
---|
60 | Dataset origDataset = GetVariableValue<Dataset>(DATASET, scope, true);
|
---|
61 | int targetVariable = origDataset.GetVariableIndex(GetVariableValue<StringData>(TARGETVARIABLE, scope, true).Data);
|
---|
62 | ItemList<DoubleData> classValues = GetVariableValue<ItemList<DoubleData>>(TARGETCLASSVALUES, scope, true);
|
---|
63 | int origTrainingSamplesStart = GetVariableValue<IntData>(TRAININGSAMPLESSTART, scope, true).Data;
|
---|
64 | int origTrainingSamplesEnd = GetVariableValue<IntData>(TRAININGSAMPLESEND, scope, true).Data;
|
---|
65 | int origValidationSamplesStart = GetVariableValue<IntData>(VALIDATIONSAMPLESSTART, scope, true).Data;
|
---|
66 | int origValidationSamplesEnd = GetVariableValue<IntData>(VALIDATIONSAMPLESEND, scope, true).Data;
|
---|
67 | ItemList<DoubleData> binaryClassValues = new ItemList<DoubleData>();
|
---|
68 | binaryClassValues.Add(new DoubleData(0.0));
|
---|
69 | binaryClassValues.Add(new DoubleData(1.0));
|
---|
70 | for (int i = 0; i < classValues.Count - 1; i++) {
|
---|
71 | for (int j = i + 1; j < classValues.Count; j++) {
|
---|
72 | Dataset dataset = new Dataset();
|
---|
73 | dataset.Columns = origDataset.Columns;
|
---|
74 | double classAValue = classValues[i].Data;
|
---|
75 | double classBValue = classValues[j].Data;
|
---|
76 | int trainingSamplesStart;
|
---|
77 | int trainingSamplesEnd;
|
---|
78 | int validationSamplesStart;
|
---|
79 | int validationSamplesEnd;
|
---|
80 |
|
---|
81 | trainingSamplesStart = 0;
|
---|
82 | List<double[]> rows = new List<double[]>();
|
---|
83 | for (int k = origTrainingSamplesStart; k < origTrainingSamplesEnd; k++) {
|
---|
84 | double[] row = new double[dataset.Columns];
|
---|
85 | double targetValue = origDataset.GetValue(k, targetVariable);
|
---|
86 | if (targetValue.IsAlmost(classAValue)) {
|
---|
87 | for (int l = 0; l < row.Length; l++) {
|
---|
88 | row[l] = origDataset.GetValue(k, l);
|
---|
89 | }
|
---|
90 | row[targetVariable] = 0;
|
---|
91 | rows.Add(row);
|
---|
92 | } else if (targetValue.IsAlmost(classBValue)) {
|
---|
93 | for (int l = 0; l < row.Length; l++) {
|
---|
94 | row[l] = origDataset.GetValue(k, l);
|
---|
95 | }
|
---|
96 | row[targetVariable] = 1.0;
|
---|
97 | rows.Add(row);
|
---|
98 | }
|
---|
99 | }
|
---|
100 | trainingSamplesEnd = rows.Count;
|
---|
101 | validationSamplesStart = rows.Count;
|
---|
102 | for (int k = origValidationSamplesStart; k < origValidationSamplesEnd; k++) {
|
---|
103 | double[] row = new double[dataset.Columns];
|
---|
104 | double targetValue = origDataset.GetValue(k, targetVariable);
|
---|
105 | if (targetValue.IsAlmost(classAValue)) {
|
---|
106 | for (int l = 0; l < row.Length; l++) {
|
---|
107 | row[l] = origDataset.GetValue(k, l);
|
---|
108 | }
|
---|
109 | row[targetVariable] = 0;
|
---|
110 | rows.Add(row);
|
---|
111 | } else if (targetValue.IsAlmost(classBValue)) {
|
---|
112 | for (int l = 0; l < row.Length; l++) {
|
---|
113 | row[l] = origDataset.GetValue(k, l);
|
---|
114 | }
|
---|
115 | row[targetVariable] = 1.0;
|
---|
116 | rows.Add(row);
|
---|
117 | }
|
---|
118 | }
|
---|
119 | validationSamplesEnd = rows.Count;
|
---|
120 |
|
---|
121 | dataset.Rows = rows.Count;
|
---|
122 | dataset.Samples = new double[dataset.Rows * dataset.Columns];
|
---|
123 | for (int k = 0; k < dataset.Rows; k++) {
|
---|
124 | for (int l = 0; l < dataset.Columns; l++) {
|
---|
125 | dataset.SetValue(k, l, rows[k][l]);
|
---|
126 | }
|
---|
127 | }
|
---|
128 |
|
---|
129 | Scope childScope = new Scope(classAValue + " vs. " + classBValue);
|
---|
130 |
|
---|
131 | childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(TARGETCLASSVALUES), binaryClassValues));
|
---|
132 | childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(CLASSAVALUE), new DoubleData(classAValue)));
|
---|
133 | childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(CLASSBVALUE), new DoubleData(classBValue)));
|
---|
134 | childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(TRAININGSAMPLESSTART), new IntData(trainingSamplesStart)));
|
---|
135 | childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(TRAININGSAMPLESEND), new IntData(trainingSamplesEnd)));
|
---|
136 | childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(VALIDATIONSAMPLESSTART), new IntData(validationSamplesStart)));
|
---|
137 | childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(VALIDATIONSAMPLESEND), new IntData(validationSamplesEnd)));
|
---|
138 | childScope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(DATASET), dataset));
|
---|
139 | scope.AddSubScope(childScope);
|
---|
140 | }
|
---|
141 | }
|
---|
142 | return null;
|
---|
143 | }
|
---|
144 | }
|
---|
145 | }
|
---|