Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.GP.StructureIdentification.Classification/3.3/ClassificationMeanSquaredErrorEvaluator.cs @ 2227

Last change on this file since 2227 was 2222, checked in by gkronber, 15 years ago

Merged changes from GP-refactoring branch back into the trunk #713.

File size: 3.3 KB
RevLine 
[645]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
25
[668]26namespace HeuristicLab.GP.StructureIdentification.Classification {
[702]27  public class ClassificationMeanSquaredErrorEvaluator : GPClassificationEvaluatorBase {
28    private const double EPSILON = 1.0E-7;
[645]29    public override string Description {
30      get {
31        return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates the mean-squared-error
32for the estimated values vs. the real values of 'TargetVariable'.";
33      }
34    }
35
36    public ClassificationMeanSquaredErrorEvaluator()
37      : base() {
[702]38      AddVariableInfo(new VariableInfo("MSE", "The mean squared error of the model", typeof(DoubleData), VariableKind.New));
[645]39    }
40
[1891]41    public override void Evaluate(IScope scope, ITreeEvaluator evaluator, HeuristicLab.DataAnalysis.Dataset dataset, int targetVariable, double[] classes, double[] thresholds, int start, int end) {
[645]42      double errorsSquaredSum = 0;
[712]43      for (int sample = start; sample < end; sample++) {
[1891]44        double estimated = evaluator.Evaluate(sample);
[712]45        double original = dataset.GetValue(sample, targetVariable);
46        if (!double.IsNaN(original) && !double.IsInfinity(original)) {
[645]47          double error = estimated - original;
48          // between classes use squared error
49          // on the lower end and upper end only add linear error if the absolute error is larger than 1
50          // the error>1.0 constraint is needed for balance because in the interval ]-1, 1[ the squared error is smaller than the absolute error
[712]51          if ((IsEqual(original, classes[0]) && error < -1.0) ||
[702]52            (IsEqual(original, classes[classes.Length - 1]) && error > 1.0)) {
[645]53            errorsSquaredSum += Math.Abs(error); // only add linear error below the smallest class or above the largest class
54          } else {
55            errorsSquaredSum += error * error;
56          }
57        }
58      }
59
60      errorsSquaredSum /= (end - start);
[712]61      if (double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
[645]62        errorsSquaredSum = double.MaxValue;
63      }
[702]64
65      DoubleData mse = GetVariableValue<DoubleData>("MSE", scope, false, false);
[712]66      if (mse == null) {
[702]67        mse = new DoubleData();
68        scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("MSE"), mse));
69      }
70
[645]71      mse.Data = errorsSquaredSum;
72    }
73
74    private bool IsEqual(double x, double y) {
75      return Math.Abs(x - y) < EPSILON;
76    }
77  }
78}
Note: See TracBrowser for help on using the repository browser.