[720] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using System.Xml;
|
---|
| 28 | using System.Diagnostics;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
[2222] | 30 | using HeuristicLab.GP.Interfaces;
|
---|
| 31 | using HeuristicLab.DataAnalysis;
|
---|
[720] | 32 |
|
---|
| 33 | namespace HeuristicLab.GP.Boolean {
|
---|
| 34 | internal class BooleanTreeInterpreter {
|
---|
| 35 | private const double EPSILON = 0.00001;
|
---|
| 36 | private Dataset dataset;
|
---|
[2222] | 37 | private IFunctionTree tree;
|
---|
[720] | 38 | private int targetVariable;
|
---|
| 39 | private int currentRow;
|
---|
| 40 |
|
---|
[2222] | 41 | public void Reset(Dataset dataset, IFunctionTree tree, int targetVariable) {
|
---|
[720] | 42 | this.dataset = dataset;
|
---|
[2222] | 43 | this.tree = tree;
|
---|
[720] | 44 | this.targetVariable = targetVariable;
|
---|
| 45 | }
|
---|
| 46 |
|
---|
[730] | 47 | internal int GetNumberOfErrors(int start, int end) {
|
---|
| 48 | int errors = 0;
|
---|
[722] | 49 | for (int i = start; i < end; i++) {
|
---|
[720] | 50 | currentRow = i;
|
---|
[2222] | 51 | int result = Step(tree) ? 1 : 0;
|
---|
[730] | 52 | if (Math.Abs(result - dataset.GetValue(i, targetVariable)) > EPSILON) errors++;
|
---|
[720] | 53 | }
|
---|
[730] | 54 | return errors;
|
---|
[720] | 55 | }
|
---|
| 56 |
|
---|
[2222] | 57 | internal bool Step(IFunctionTree t) {
|
---|
| 58 | int symbol = SymbolTable.MapFunction(t.Function);
|
---|
[722] | 59 | switch (symbol) {
|
---|
[2222] | 60 | case SymbolTable.AND: return Step(t.SubTrees[0]) && Step(t.SubTrees[1]);
|
---|
| 61 | case SymbolTable.OR: return Step(t.SubTrees[0]) || Step(t.SubTrees[1]);
|
---|
| 62 | case SymbolTable.NOT: return !Step(t.SubTrees[0]);
|
---|
| 63 | case SymbolTable.XOR: return Step(t.SubTrees[0]) ^ Step(t.SubTrees[1]);
|
---|
| 64 | case SymbolTable.NAND: return !(Step(t.SubTrees[0]) && Step(t.SubTrees[1]));
|
---|
| 65 | case SymbolTable.NOR: return !(Step(t.SubTrees[0]) || Step(t.SubTrees[1]));
|
---|
| 66 | case SymbolTable.VARIABLE: {
|
---|
| 67 | var varNode = (VariableFunctionTree)t;
|
---|
| 68 | int index = dataset.GetVariableIndex(varNode.VariableName);
|
---|
| 69 | return !IsAlmost(dataset.GetValue(currentRow, index), 0.0);
|
---|
| 70 | }
|
---|
[720] | 71 | case SymbolTable.UNKNOWN:
|
---|
| 72 | default:
|
---|
[2222] | 73 | throw new UnknownFunctionException(t.Function.Name);
|
---|
[720] | 74 | }
|
---|
| 75 | }
|
---|
[2222] | 76 |
|
---|
| 77 | private bool IsAlmost(double x, double y) {
|
---|
| 78 | return Math.Abs(x - y) < EPSILON;
|
---|
| 79 | }
|
---|
[720] | 80 | }
|
---|
| 81 | }
|
---|