1 | /* ***************************************************************************
|
---|
2 | * This file is part of SharpNEAT - Evolution of Neural Networks.
|
---|
3 | *
|
---|
4 | * Copyright 2004-2006, 2009-2010 Colin Green (sharpneat@gmail.com)
|
---|
5 | *
|
---|
6 | * SharpNEAT is free software: you can redistribute it and/or modify
|
---|
7 | * it under the terms of the GNU General Public License as published by
|
---|
8 | * the Free Software Foundation, either version 3 of the License, or
|
---|
9 | * (at your option) any later version.
|
---|
10 | *
|
---|
11 | * SharpNEAT is distributed in the hope that it will be useful,
|
---|
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | * GNU General Public License for more details.
|
---|
15 | *
|
---|
16 | * You should have received a copy of the GNU General Public License
|
---|
17 | * along with SharpNEAT. If not, see <http://www.gnu.org/licenses/>.
|
---|
18 | */
|
---|
19 |
|
---|
20 | // ENHANCEMENT: Replace usages of this class with the superceding version from Math.Net.
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace SimSharp {
|
---|
24 | /// <summary>
|
---|
25 | /// A fast random number generator for .NET
|
---|
26 | /// Colin Green, January 2005
|
---|
27 | ///
|
---|
28 | /// Key points:
|
---|
29 | /// 1) Based on a simple and fast xor-shift pseudo random number generator (RNG) specified in:
|
---|
30 | /// Marsaglia, George. (2003). Xorshift RNGs.
|
---|
31 | /// http://www.jstatsoft.org/v08/i14/paper
|
---|
32 | ///
|
---|
33 | /// This particular implementation of xorshift has a period of 2^128-1. See the above paper to see
|
---|
34 | /// how this can be easily extened if you need a longer period. At the time of writing I could find no
|
---|
35 | /// information on the period of System.Random for comparison.
|
---|
36 | ///
|
---|
37 | /// 2) Faster than System.Random. Up to 8x faster, depending on which methods are called.
|
---|
38 | ///
|
---|
39 | /// 3) Direct replacement for System.Random. This class implements all of the methods that System.Random
|
---|
40 | /// does plus some additional methods. The like named methods are functionally equivalent.
|
---|
41 | ///
|
---|
42 | /// 4) Allows fast re-initialisation with a seed, unlike System.Random which accepts a seed at construction
|
---|
43 | /// time which then executes a relatively expensive initialisation routine. This provides a vast speed improvement
|
---|
44 | /// if you need to reset the pseudo-random number sequence many times, e.g. if you want to re-generate the same
|
---|
45 | /// sequence of random numbers many times. An alternative might be to cache random numbers in an array, but that
|
---|
46 | /// approach is limited by memory capacity and the fact that you may also want a large number of different sequences
|
---|
47 | /// cached. Each sequence can be represented by a single seed value (int) when using FastRandom.
|
---|
48 | ///
|
---|
49 | /// Notes.
|
---|
50 | /// A further performance improvement can be obtained by declaring local variables as static, thus avoiding
|
---|
51 | /// re-allocation of variables on each call. However care should be taken if multiple instances of
|
---|
52 | /// FastRandom are in use or if being used in a multi-threaded environment.
|
---|
53 | ///
|
---|
54 | ///
|
---|
55 | /// Colin Green, September 4th 2005
|
---|
56 | /// - Added NextBytesUnsafe() - commented out by default.
|
---|
57 | /// - Fixed bug in Reinitialise() - y,z and w variables were not being reset.
|
---|
58 | ///
|
---|
59 | /// Colin Green, December 2008.
|
---|
60 | /// - Fix to Next() - Was previously able to return int.MaxValue, contrary to the method's contract and comments.
|
---|
61 | /// - Modified NextBool() to use _bitMask instead of a count of remaining bits. Also reset the bit buffer in Reinitialise().
|
---|
62 | ///
|
---|
63 | /// Colin Green, 2011-08-31
|
---|
64 | /// - Added NextByte() method.
|
---|
65 | /// - Added new statically declared seedRng FastRandom to allow easy creation of multiple FastRandoms with different seeds
|
---|
66 | /// within a single clock tick.
|
---|
67 | ///
|
---|
68 | /// Colin Green, 2011-10-04
|
---|
69 | /// - Seeds are now hashed. Without this the first random sample for nearby seeds (1,2,3, etc.) are very similar
|
---|
70 | /// (have a similar bit pattern). Thanks to Francois Guibert for identifying this problem.
|
---|
71 | ///
|
---|
72 | /// </summary>
|
---|
73 | public class FastRandom : IRandom {
|
---|
74 | #region Static Fields
|
---|
75 | /// <summary>
|
---|
76 | /// A static RNG that is used to generate seed values when constructing new instances of FastRandom.
|
---|
77 | /// This overcomes the problem whereby multiple FastRandom instances are instantiated within the same
|
---|
78 | /// tick count and thus obtain the same seed, that approach can result in extreme biases occuring
|
---|
79 | /// in some cases depending on how the RNG is used.
|
---|
80 | /// </summary>
|
---|
81 | static readonly FastRandom __seedRng = new FastRandom((int)System.Environment.TickCount);
|
---|
82 | #endregion
|
---|
83 |
|
---|
84 | #region Instance Fields
|
---|
85 |
|
---|
86 | // The +1 ensures NextDouble doesn't generate 1.0
|
---|
87 | const double REAL_UNIT_INT = 1.0 / ((double)int.MaxValue + 1.0);
|
---|
88 | const double REAL_UNIT_UINT = 1.0 / ((double)uint.MaxValue + 1.0);
|
---|
89 | const uint Y = 842502087, Z = 3579807591, W = 273326509;
|
---|
90 |
|
---|
91 | uint _x, _y, _z, _w;
|
---|
92 |
|
---|
93 | #endregion
|
---|
94 |
|
---|
95 | #region Constructors
|
---|
96 |
|
---|
97 | /// <summary>
|
---|
98 | /// Initialises a new instance using a seed generated from the class's static seed RNG.
|
---|
99 | /// </summary>
|
---|
100 | public FastRandom() {
|
---|
101 | Reinitialise(__seedRng.NextInt());
|
---|
102 | }
|
---|
103 |
|
---|
104 | /// <summary>
|
---|
105 | /// Initialises a new instance using an int value as seed.
|
---|
106 | /// This constructor signature is provided to maintain compatibility with
|
---|
107 | /// System.Random
|
---|
108 | /// </summary>
|
---|
109 | public FastRandom(int seed) {
|
---|
110 | Reinitialise(seed);
|
---|
111 | }
|
---|
112 |
|
---|
113 | #endregion
|
---|
114 |
|
---|
115 | #region Public Methods [Reinitialisation]
|
---|
116 |
|
---|
117 | /// <summary>
|
---|
118 | /// Reinitialises using an int value as a seed.
|
---|
119 | /// </summary>
|
---|
120 | public void Reinitialise(int seed) {
|
---|
121 | // The only stipulation stated for the xorshift RNG is that at least one of
|
---|
122 | // the seeds x,y,z,w is non-zero. We fulfill that requirement by only allowing
|
---|
123 | // resetting of the x seed.
|
---|
124 |
|
---|
125 | // The first random sample will be very closely related to the value of _x we set here.
|
---|
126 | // Thus setting _x = seed will result in a close correlation between the bit patterns of the seed and
|
---|
127 | // the first random sample, therefore if the seed has a pattern (e.g. 1,2,3) then there will also be
|
---|
128 | // a recognisable pattern across the first random samples.
|
---|
129 | //
|
---|
130 | // Such a strong correlation between the seed and the first random sample is an undesirable
|
---|
131 | // charactersitic of a RNG, therefore we significantly weaken any correlation by hashing the seed's bits.
|
---|
132 | // This is achieved by multiplying the seed with four large primes each with bits distributed over the
|
---|
133 | // full length of a 32bit value, finally adding the results to give _x.
|
---|
134 | _x = (uint)((seed * 1431655781)
|
---|
135 | + (seed * 1183186591)
|
---|
136 | + (seed * 622729787)
|
---|
137 | + (seed * 338294347));
|
---|
138 |
|
---|
139 | _y = Y;
|
---|
140 | _z = Z;
|
---|
141 | _w = W;
|
---|
142 |
|
---|
143 | _bitBuffer = 0;
|
---|
144 | _bitMask = 1;
|
---|
145 | }
|
---|
146 |
|
---|
147 | #endregion
|
---|
148 |
|
---|
149 | #region Public Methods [System.Random functionally equivalent methods]
|
---|
150 |
|
---|
151 | /// <summary>
|
---|
152 | /// Generates a random int over the range 0 to int.MaxValue-1.
|
---|
153 | /// MaxValue is not generated in order to remain functionally equivalent to System.Random.Next().
|
---|
154 | /// This does slightly eat into some of the performance gain over System.Random, but not much.
|
---|
155 | /// For better performance see:
|
---|
156 | ///
|
---|
157 | /// Call NextInt() for an int over the range 0 to int.MaxValue.
|
---|
158 | ///
|
---|
159 | /// Call NextUInt() and cast the result to an int to generate an int over the full Int32 value range
|
---|
160 | /// including negative values.
|
---|
161 | /// </summary>
|
---|
162 | public int Next() {
|
---|
163 | uint t = _x ^ (_x << 11);
|
---|
164 | _x = _y; _y = _z; _z = _w;
|
---|
165 | _w = (_w ^ (_w >> 19)) ^ (t ^ (t >> 8));
|
---|
166 |
|
---|
167 | // Handle the special case where the value int.MaxValue is generated. This is outside of
|
---|
168 | // the range of permitted values, so we therefore call Next() to try again.
|
---|
169 | uint rtn = _w & 0x7FFFFFFF;
|
---|
170 | if (rtn == 0x7FFFFFFF) {
|
---|
171 | return Next();
|
---|
172 | }
|
---|
173 | return (int)rtn;
|
---|
174 | }
|
---|
175 |
|
---|
176 | /// <summary>
|
---|
177 | /// Generates a random int over the range 0 to upperBound-1, and not including upperBound.
|
---|
178 | /// </summary>
|
---|
179 | public int Next(int upperBound) {
|
---|
180 | if (upperBound < 0) {
|
---|
181 | throw new ArgumentOutOfRangeException("upperBound", upperBound, "upperBound must be >=0");
|
---|
182 | }
|
---|
183 |
|
---|
184 | uint t = _x ^ (_x << 11);
|
---|
185 | _x = _y; _y = _z; _z = _w;
|
---|
186 |
|
---|
187 | // ENHANCEMENT: Can we do this without converting to a double and back again?
|
---|
188 | // The explicit int cast before the first multiplication gives better performance.
|
---|
189 | // See comments in NextDouble.
|
---|
190 | return (int)((REAL_UNIT_INT * (int)(0x7FFFFFFF & (_w = (_w ^ (_w >> 19)) ^ (t ^ (t >> 8))))) * upperBound);
|
---|
191 | }
|
---|
192 |
|
---|
193 | /// <summary>
|
---|
194 | /// Generates a random int over the range lowerBound to upperBound-1, and not including upperBound.
|
---|
195 | /// upperBound must be >= lowerBound. lowerBound may be negative.
|
---|
196 | /// </summary>
|
---|
197 | public int Next(int lowerBound, int upperBound) {
|
---|
198 | if (lowerBound > upperBound) {
|
---|
199 | throw new ArgumentOutOfRangeException("upperBound", upperBound, "upperBound must be >=lowerBound");
|
---|
200 | }
|
---|
201 |
|
---|
202 | uint t = _x ^ (_x << 11);
|
---|
203 | _x = _y; _y = _z; _z = _w;
|
---|
204 |
|
---|
205 | // The explicit int cast before the first multiplication gives better performance.
|
---|
206 | // See comments in NextDouble.
|
---|
207 | int range = upperBound - lowerBound;
|
---|
208 | if (range < 0) { // If range is <0 then an overflow has occured and must resort to using long integer arithmetic instead (slower).
|
---|
209 | // We also must use all 32 bits of precision, instead of the normal 31, which again is slower.
|
---|
210 | return lowerBound + (int)((REAL_UNIT_UINT * (double)(_w = (_w ^ (_w >> 19)) ^ (t ^ (t >> 8)))) * (double)((long)upperBound - (long)lowerBound));
|
---|
211 | }
|
---|
212 |
|
---|
213 | // 31 bits of precision will suffice if range<=int.MaxValue. This allows us to cast to an int and gain
|
---|
214 | // a little more performance.
|
---|
215 | return lowerBound + (int)((REAL_UNIT_INT * (double)(int)(0x7FFFFFFF & (_w = (_w ^ (_w >> 19)) ^ (t ^ (t >> 8))))) * (double)range);
|
---|
216 | }
|
---|
217 |
|
---|
218 | /// <summary>
|
---|
219 | /// Generates a random double. Values returned are over the range [0, 1). That is, inclusive of 0.0 and exclusive of 1.0.
|
---|
220 | /// </summary>
|
---|
221 | public double NextDouble() {
|
---|
222 | uint t = _x ^ (_x << 11);
|
---|
223 | _x = _y; _y = _z; _z = _w;
|
---|
224 |
|
---|
225 | // Here we can gain a 2x speed improvement by generating a value that can be cast to
|
---|
226 | // an int instead of the more easily available uint. If we then explicitly cast to an
|
---|
227 | // int the compiler will then cast the int to a double to perform the multiplication,
|
---|
228 | // this final cast is a lot faster than casting from a uint to a double. The extra cast
|
---|
229 | // to an int is very fast (the allocated bits remain the same) and so the overall effect
|
---|
230 | // of the extra cast is a significant performance improvement.
|
---|
231 | //
|
---|
232 | // Also note that the loss of one bit of precision is equivalent to what occurs within
|
---|
233 | // System.Random.
|
---|
234 | return REAL_UNIT_INT * (int)(0x7FFFFFFF & (_w = (_w ^ (_w >> 19)) ^ (t ^ (t >> 8))));
|
---|
235 | }
|
---|
236 |
|
---|
237 | /// <summary>
|
---|
238 | /// Fills the provided byte array with random bytes.
|
---|
239 | /// This method is functionally equivalent to System.Random.NextBytes().
|
---|
240 | /// </summary>
|
---|
241 | public void NextBytes(byte[] buffer) {
|
---|
242 | // Fill up the bulk of the buffer in chunks of 4 bytes at a time.
|
---|
243 | uint x = this._x, y = this._y, z = this._z, w = this._w;
|
---|
244 | int i = 0;
|
---|
245 | uint t;
|
---|
246 | for (int bound = buffer.Length - 3; i < bound; ) {
|
---|
247 | // Generate 4 bytes.
|
---|
248 | // Increased performance is achieved by generating 4 random bytes per loop.
|
---|
249 | // Also note that no mask needs to be applied to zero out the higher order bytes before
|
---|
250 | // casting because the cast ignores thos bytes. Thanks to Stefan Trosch�tz for pointing this out.
|
---|
251 | t = x ^ (x << 11);
|
---|
252 | x = y; y = z; z = w;
|
---|
253 | w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
|
---|
254 |
|
---|
255 | buffer[i++] = (byte)w;
|
---|
256 | buffer[i++] = (byte)(w >> 8);
|
---|
257 | buffer[i++] = (byte)(w >> 16);
|
---|
258 | buffer[i++] = (byte)(w >> 24);
|
---|
259 | }
|
---|
260 |
|
---|
261 | // Fill up any remaining bytes in the buffer.
|
---|
262 | if (i < buffer.Length) {
|
---|
263 | // Generate 4 bytes.
|
---|
264 | t = x ^ (x << 11);
|
---|
265 | x = y; y = z; z = w;
|
---|
266 | w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
|
---|
267 |
|
---|
268 | buffer[i++] = (byte)w;
|
---|
269 | if (i < buffer.Length) {
|
---|
270 | buffer[i++] = (byte)(w >> 8);
|
---|
271 | if (i < buffer.Length) {
|
---|
272 | buffer[i++] = (byte)(w >> 16);
|
---|
273 | if (i < buffer.Length) {
|
---|
274 | buffer[i] = (byte)(w >> 24);
|
---|
275 | }
|
---|
276 | }
|
---|
277 | }
|
---|
278 | }
|
---|
279 | this._x = x; this._y = y; this._z = z; this._w = w;
|
---|
280 | }
|
---|
281 |
|
---|
282 | ///// <summary>
|
---|
283 | ///// A version of NextBytes that uses a pointer to set 4 bytes of the byte buffer in one operation
|
---|
284 | ///// thus providing a nice speedup. The loop is also partially unrolled to allow out-of-order-execution,
|
---|
285 | ///// this results in about a x2 speedup on an AMD Athlon. Thus performance may vary wildly on different CPUs
|
---|
286 | ///// depending on the number of execution units available.
|
---|
287 | /////
|
---|
288 | ///// Another significant speedup is obtained by setting the 4 bytes by indexing pDWord (e.g. pDWord[i++]=_w)
|
---|
289 | ///// instead of dereferencing it (e.g. *pDWord++=_w).
|
---|
290 | /////
|
---|
291 | ///// Note that this routine requires the unsafe compilation flag to be specified and so is commented out by default.
|
---|
292 | ///// </summary>
|
---|
293 | ///// <param name="buffer"></param>
|
---|
294 | // public unsafe void NextBytesUnsafe(byte[] buffer)
|
---|
295 | // {
|
---|
296 | // if(buffer.Length % 8 != 0)
|
---|
297 | // throw new ArgumentException("Buffer length must be divisible by 8", "buffer");
|
---|
298 | //
|
---|
299 | // uint _x=this._x, _y=this._y, _z=this._z, _w=this._w;
|
---|
300 | //
|
---|
301 | // fixed(byte* pByte0 = buffer)
|
---|
302 | // {
|
---|
303 | // uint* pDWord = (uint*)pByte0;
|
---|
304 | // for(int i=0, len=buffer.Length>>2; i < len; i+=2)
|
---|
305 | // {
|
---|
306 | // uint t=(_x^(_x<<11));
|
---|
307 | // _x=_y; _y=_z; _z=_w;
|
---|
308 | // pDWord[i] = _w = (_w^(_w>>19))^(t^(t>>8));
|
---|
309 | //
|
---|
310 | // t=(_x^(_x<<11));
|
---|
311 | // _x=_y; _y=_z; _z=_w;
|
---|
312 | // pDWord[i+1] = _w = (_w^(_w>>19))^(t^(t>>8));
|
---|
313 | // }
|
---|
314 | // }
|
---|
315 | //
|
---|
316 | // this._x=_x; this._y=_y; this._z=_z; this._w=_w;
|
---|
317 | // }
|
---|
318 | #endregion
|
---|
319 |
|
---|
320 | #region Public Methods [Methods not present on System.Random]
|
---|
321 |
|
---|
322 | /// <summary>
|
---|
323 | /// Generates a uint. Values returned are over the full range of a uint,
|
---|
324 | /// uint.MinValue to uint.MaxValue, inclusive.
|
---|
325 | ///
|
---|
326 | /// This is the fastest method for generating a single random number because the underlying
|
---|
327 | /// random number generator algorithm generates 32 random bits that can be cast directly to
|
---|
328 | /// a uint.
|
---|
329 | /// </summary>
|
---|
330 | public uint NextUInt() {
|
---|
331 | uint t = _x ^ (_x << 11);
|
---|
332 | _x = _y; _y = _z; _z = _w;
|
---|
333 | return _w = (_w ^ (_w >> 19)) ^ (t ^ (t >> 8));
|
---|
334 | }
|
---|
335 |
|
---|
336 | /// <summary>
|
---|
337 | /// Generates a random int over the range 0 to int.MaxValue, inclusive.
|
---|
338 | /// This method differs from Next() only in that the range is 0 to int.MaxValue
|
---|
339 | /// and not 0 to int.MaxValue-1.
|
---|
340 | ///
|
---|
341 | /// The slight difference in range means this method is slightly faster than Next()
|
---|
342 | /// but is not functionally equivalent to System.Random.Next().
|
---|
343 | /// </summary>
|
---|
344 | public int NextInt() {
|
---|
345 | uint t = _x ^ (_x << 11);
|
---|
346 | _x = _y; _y = _z; _z = _w;
|
---|
347 | return (int)(0x7FFFFFFF & (_w = (_w ^ (_w >> 19)) ^ (t ^ (t >> 8))));
|
---|
348 | }
|
---|
349 |
|
---|
350 | /// <summary>
|
---|
351 | /// Generates a random double. Values returned are over the range (0, 1). That is, exclusive of both 0.0 and 1.0.
|
---|
352 | /// </summary>
|
---|
353 | public double NextDoubleNonZero() {
|
---|
354 | uint t = _x ^ (_x << 11);
|
---|
355 | _x = _y; _y = _z; _z = _w;
|
---|
356 |
|
---|
357 | // See notes on NextDouble(). Here we generate a random value from 0 to 0x7f ff ff fe, and add one
|
---|
358 | // to generate a random value from 1 to 0x7f ff ff ff.
|
---|
359 | return REAL_UNIT_INT * (int)((0x7FFFFFFE & (_w = (_w ^ (_w >> 19)) ^ (t ^ (t >> 8)))) + 1U);
|
---|
360 | }
|
---|
361 |
|
---|
362 | // Buffer 32 bits in bitBuffer, return 1 at a time, keep track of how many have been returned
|
---|
363 | // with bitMask.
|
---|
364 | uint _bitBuffer;
|
---|
365 | uint _bitMask;
|
---|
366 |
|
---|
367 | /// <summary>
|
---|
368 | /// Generates a single random bit.
|
---|
369 | /// This method's performance is improved by generating 32 bits in one operation and storing them
|
---|
370 | /// ready for future calls.
|
---|
371 | /// </summary>
|
---|
372 | public bool NextBool() {
|
---|
373 | if (0 == _bitMask) {
|
---|
374 | // Generate 32 more bits.
|
---|
375 | uint t = _x ^ (_x << 11);
|
---|
376 | _x = _y; _y = _z; _z = _w;
|
---|
377 | _bitBuffer = _w = (_w ^ (_w >> 19)) ^ (t ^ (t >> 8));
|
---|
378 |
|
---|
379 | // Reset the bitMask that tells us which bit to read next.
|
---|
380 | _bitMask = 0x80000000;
|
---|
381 | return (_bitBuffer & _bitMask) == 0;
|
---|
382 | }
|
---|
383 |
|
---|
384 | return (_bitBuffer & (_bitMask >>= 1)) == 0;
|
---|
385 | }
|
---|
386 |
|
---|
387 | // Buffer of random bytes. A single UInt32 is used to buffer 4 bytes.
|
---|
388 | // _byteBufferState tracks how bytes remain in the buffer, a value of
|
---|
389 | // zero indicates that the buffer is empty.
|
---|
390 | uint _byteBuffer;
|
---|
391 | byte _byteBufferState;
|
---|
392 |
|
---|
393 | /// <summary>
|
---|
394 | /// Generates a signle random byte with range [0,255].
|
---|
395 | /// This method's performance is improved by generating 4 bytes in one operation and storing them
|
---|
396 | /// ready for future calls.
|
---|
397 | /// </summary>
|
---|
398 | public byte NextByte() {
|
---|
399 | if (0 == _byteBufferState) {
|
---|
400 | // Generate 4 more bytes.
|
---|
401 | uint t = _x ^ (_x << 11);
|
---|
402 | _x = _y; _y = _z; _z = _w;
|
---|
403 | _byteBuffer = _w = (_w ^ (_w >> 19)) ^ (t ^ (t >> 8));
|
---|
404 | _byteBufferState = 0x4;
|
---|
405 | return (byte)_byteBuffer; // Note. Masking with 0xFF is unnecessary.
|
---|
406 | }
|
---|
407 | _byteBufferState >>= 1;
|
---|
408 | return (byte)(_byteBuffer >>= 1);
|
---|
409 | }
|
---|
410 |
|
---|
411 | #endregion
|
---|
412 | }
|
---|
413 | }
|
---|