[2645] | 1 | /*
|
---|
| 2 | * SVM.NET Library
|
---|
| 3 | * Copyright (C) 2008 Matthew Johnson
|
---|
| 4 | *
|
---|
| 5 | * This program is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * This program is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | using System;
|
---|
| 21 |
|
---|
[4068] | 22 | namespace SVM {
|
---|
| 23 | /// <summary>
|
---|
| 24 | /// Class containing the routines to train SVM models.
|
---|
| 25 | /// </summary>
|
---|
| 26 | public static class Training {
|
---|
[2645] | 27 | /// <summary>
|
---|
[4068] | 28 | /// Whether the system will output information to the console during the training process.
|
---|
[2645] | 29 | /// </summary>
|
---|
[4068] | 30 | public static bool IsVerbose {
|
---|
| 31 | get {
|
---|
| 32 | return Procedures.IsVerbose;
|
---|
| 33 | }
|
---|
| 34 | set {
|
---|
| 35 | Procedures.IsVerbose = value;
|
---|
| 36 | }
|
---|
| 37 | }
|
---|
[2645] | 38 |
|
---|
[4068] | 39 | private static double doCrossValidation(Problem problem, Parameter parameters, int nr_fold, bool shuffleTraining) {
|
---|
| 40 | int i;
|
---|
| 41 | double[] target = new double[problem.Count];
|
---|
| 42 | Procedures.svm_cross_validation(problem, parameters, nr_fold, target, shuffleTraining);
|
---|
| 43 | int total_correct = 0;
|
---|
| 44 | double total_error = 0;
|
---|
| 45 | //double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
|
---|
| 46 | if (parameters.SvmType == SvmType.EPSILON_SVR || parameters.SvmType == SvmType.NU_SVR) {
|
---|
| 47 | for (i = 0; i < problem.Count; i++) {
|
---|
| 48 | double y = problem.Y[i];
|
---|
| 49 | double v = target[i];
|
---|
| 50 | total_error += (v - y) * (v - y);
|
---|
| 51 | //sumv += v;
|
---|
| 52 | //sumy += y;
|
---|
| 53 | //sumvv += v * v;
|
---|
| 54 | //sumyy += y * y;
|
---|
| 55 | //sumvy += v * y;
|
---|
[2645] | 56 | }
|
---|
[4068] | 57 | return total_error / problem.Count; // return MSE
|
---|
| 58 | // (problem.Count * sumvy - sumv * sumy) / (Math.Sqrt(problem.Count * sumvv - sumv * sumv) * Math.Sqrt(problem.Count * sumyy - sumy * sumy));
|
---|
| 59 | } else
|
---|
| 60 | for (i = 0; i < problem.Count; i++)
|
---|
| 61 | if (target[i] == problem.Y[i])
|
---|
| 62 | ++total_correct;
|
---|
| 63 | return (double)total_correct / problem.Count;
|
---|
| 64 | }
|
---|
| 65 | /// <summary>
|
---|
| 66 | /// Legacy. Allows use as if this was svm_train. See libsvm documentation for details on which arguments to pass.
|
---|
| 67 | /// </summary>
|
---|
| 68 | /// <param name="args"></param>
|
---|
| 69 | [Obsolete("Provided only for legacy compatibility, use the other Train() methods")]
|
---|
| 70 | public static void Train(params string[] args) {
|
---|
| 71 | Parameter parameters;
|
---|
| 72 | Problem problem;
|
---|
| 73 | bool crossValidation;
|
---|
| 74 | int nrfold;
|
---|
| 75 | string modelFilename;
|
---|
| 76 | parseCommandLine(args, out parameters, out problem, out crossValidation, out nrfold, out modelFilename);
|
---|
| 77 | if (crossValidation)
|
---|
| 78 | PerformCrossValidation(problem, parameters, nrfold, true);
|
---|
| 79 | else Model.Write(modelFilename, Train(problem, parameters));
|
---|
| 80 | }
|
---|
[2645] | 81 |
|
---|
[4068] | 82 | /// <summary>
|
---|
| 83 | /// Performs cross validation.
|
---|
| 84 | /// </summary>
|
---|
| 85 | /// <param name="problem">The training data</param>
|
---|
| 86 | /// <param name="parameters">The parameters to test</param>
|
---|
| 87 | /// <param name="nrfold">The number of cross validations to use</param>
|
---|
| 88 | /// <returns>The cross validation score</returns>
|
---|
| 89 | public static double PerformCrossValidation(Problem problem, Parameter parameters, int nrfold, bool shuffleTraining) {
|
---|
| 90 | string error = Procedures.svm_check_parameter(problem, parameters);
|
---|
| 91 | if (error == null)
|
---|
| 92 | return doCrossValidation(problem, parameters, nrfold, shuffleTraining);
|
---|
| 93 | else throw new Exception(error);
|
---|
| 94 | }
|
---|
[2645] | 95 |
|
---|
[4068] | 96 | /// <summary>
|
---|
| 97 | /// Trains a model using the provided training data and parameters.
|
---|
| 98 | /// </summary>
|
---|
| 99 | /// <param name="problem">The training data</param>
|
---|
| 100 | /// <param name="parameters">The parameters to use</param>
|
---|
| 101 | /// <returns>A trained SVM Model</returns>
|
---|
| 102 | public static Model Train(Problem problem, Parameter parameters) {
|
---|
| 103 | string error = Procedures.svm_check_parameter(problem, parameters);
|
---|
[2645] | 104 |
|
---|
[4068] | 105 | if (error == null)
|
---|
| 106 | return Procedures.svm_train(problem, parameters);
|
---|
| 107 | else throw new Exception(error);
|
---|
| 108 | }
|
---|
[2645] | 109 |
|
---|
[4068] | 110 | private static void parseCommandLine(string[] args, out Parameter parameters, out Problem problem, out bool crossValidation, out int nrfold, out string modelFilename) {
|
---|
| 111 | int i;
|
---|
[2645] | 112 |
|
---|
[4068] | 113 | parameters = new Parameter();
|
---|
| 114 | // default values
|
---|
[2645] | 115 |
|
---|
[4068] | 116 | crossValidation = false;
|
---|
| 117 | nrfold = 0;
|
---|
[2645] | 118 |
|
---|
[4068] | 119 | // parse options
|
---|
| 120 | for (i = 0; i < args.Length; i++) {
|
---|
| 121 | if (args[i][0] != '-')
|
---|
| 122 | break;
|
---|
| 123 | ++i;
|
---|
| 124 | switch (args[i - 1][1]) {
|
---|
[2645] | 125 |
|
---|
[4068] | 126 | case 's':
|
---|
| 127 | parameters.SvmType = (SvmType)int.Parse(args[i]);
|
---|
| 128 | break;
|
---|
[2645] | 129 |
|
---|
[4068] | 130 | case 't':
|
---|
| 131 | parameters.KernelType = (KernelType)int.Parse(args[i]);
|
---|
| 132 | break;
|
---|
[2645] | 133 |
|
---|
[4068] | 134 | case 'd':
|
---|
| 135 | parameters.Degree = int.Parse(args[i]);
|
---|
| 136 | break;
|
---|
[2645] | 137 |
|
---|
[4068] | 138 | case 'g':
|
---|
| 139 | parameters.Gamma = double.Parse(args[i]);
|
---|
| 140 | break;
|
---|
[2645] | 141 |
|
---|
[4068] | 142 | case 'r':
|
---|
| 143 | parameters.Coefficient0 = double.Parse(args[i]);
|
---|
| 144 | break;
|
---|
[2645] | 145 |
|
---|
[4068] | 146 | case 'n':
|
---|
| 147 | parameters.Nu = double.Parse(args[i]);
|
---|
| 148 | break;
|
---|
[2645] | 149 |
|
---|
[4068] | 150 | case 'm':
|
---|
| 151 | parameters.CacheSize = double.Parse(args[i]);
|
---|
| 152 | break;
|
---|
[2645] | 153 |
|
---|
[4068] | 154 | case 'c':
|
---|
| 155 | parameters.C = double.Parse(args[i]);
|
---|
| 156 | break;
|
---|
[2645] | 157 |
|
---|
[4068] | 158 | case 'e':
|
---|
| 159 | parameters.EPS = double.Parse(args[i]);
|
---|
| 160 | break;
|
---|
[2645] | 161 |
|
---|
[4068] | 162 | case 'p':
|
---|
| 163 | parameters.P = double.Parse(args[i]);
|
---|
| 164 | break;
|
---|
[2645] | 165 |
|
---|
[4068] | 166 | case 'h':
|
---|
| 167 | parameters.Shrinking = int.Parse(args[i]) == 1;
|
---|
| 168 | break;
|
---|
[2645] | 169 |
|
---|
[4068] | 170 | case 'b':
|
---|
| 171 | parameters.Probability = int.Parse(args[i]) == 1;
|
---|
| 172 | break;
|
---|
[2645] | 173 |
|
---|
[4068] | 174 | case 'v':
|
---|
| 175 | crossValidation = true;
|
---|
| 176 | nrfold = int.Parse(args[i]);
|
---|
| 177 | if (nrfold < 2) {
|
---|
| 178 | throw new ArgumentException("n-fold cross validation: n must >= 2");
|
---|
| 179 | }
|
---|
| 180 | break;
|
---|
[2645] | 181 |
|
---|
[4068] | 182 | case 'w':
|
---|
| 183 | parameters.Weights[int.Parse(args[i - 1].Substring(2))] = double.Parse(args[1]);
|
---|
| 184 | break;
|
---|
[2645] | 185 |
|
---|
[4068] | 186 | default:
|
---|
| 187 | throw new ArgumentException("Unknown Parameter");
|
---|
| 188 | }
|
---|
| 189 | }
|
---|
[2645] | 190 |
|
---|
[4068] | 191 | // determine filenames
|
---|
[2645] | 192 |
|
---|
[4068] | 193 | if (i >= args.Length)
|
---|
| 194 | throw new ArgumentException("No input file specified");
|
---|
[2645] | 195 |
|
---|
[4068] | 196 | problem = Problem.Read(args[i]);
|
---|
[2645] | 197 |
|
---|
[4068] | 198 | if (parameters.Gamma == 0)
|
---|
| 199 | parameters.Gamma = 1.0 / problem.MaxIndex;
|
---|
[2645] | 200 |
|
---|
[4068] | 201 | if (i < args.Length - 1)
|
---|
| 202 | modelFilename = args[i + 1];
|
---|
| 203 | else {
|
---|
| 204 | int p = args[i].LastIndexOf('/') + 1;
|
---|
| 205 | modelFilename = args[i].Substring(p) + ".model";
|
---|
| 206 | }
|
---|
[2645] | 207 | }
|
---|
[4068] | 208 | }
|
---|
[2645] | 209 | } |
---|