1 | /*
|
---|
2 | * SVM.NET Library
|
---|
3 | * Copyright (C) 2008 Matthew Johnson
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 |
|
---|
20 | using System;
|
---|
21 | using System.IO;
|
---|
22 |
|
---|
23 | namespace SVM {
|
---|
24 |
|
---|
25 | // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
|
---|
26 | // Solves:
|
---|
27 | //
|
---|
28 | // Min 0.5(\alpha^T Q \alpha) + p^T \alpha
|
---|
29 | //
|
---|
30 | // y^T \alpha = \delta
|
---|
31 | // y_i = +1 or -1
|
---|
32 | // 0 <= alpha_i <= Cp for y_i = 1
|
---|
33 | // 0 <= alpha_i <= Cn for y_i = -1
|
---|
34 | //
|
---|
35 | // Given:
|
---|
36 | //
|
---|
37 | // Q, p, y, Cp, Cn, and an initial feasible point \alpha
|
---|
38 | // l is the size of vectors and matrices
|
---|
39 | // eps is the stopping tolerance
|
---|
40 | //
|
---|
41 | // solution will be put in \alpha, objective value will be put in obj
|
---|
42 | //
|
---|
43 | internal class Solver {
|
---|
44 | protected int active_size;
|
---|
45 | protected sbyte[] y;
|
---|
46 | protected double[] G; // gradient of objective function
|
---|
47 | private const byte LOWER_BOUND = 0;
|
---|
48 | private const byte UPPER_BOUND = 1;
|
---|
49 | private const byte FREE = 2;
|
---|
50 | private byte[] alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE
|
---|
51 | private double[] alpha;
|
---|
52 | protected IQMatrix Q;
|
---|
53 | protected float[] QD;
|
---|
54 | protected double EPS;
|
---|
55 | private double Cp, Cn;
|
---|
56 | private double[] p;
|
---|
57 | private int[] active_set;
|
---|
58 | private double[] G_bar; // gradient, if we treat free variables as 0
|
---|
59 | protected int l;
|
---|
60 | protected bool unshrink; // XXX
|
---|
61 |
|
---|
62 | protected const double INF = double.PositiveInfinity;
|
---|
63 |
|
---|
64 | private double get_C(int i) {
|
---|
65 | return (y[i] > 0) ? Cp : Cn;
|
---|
66 | }
|
---|
67 |
|
---|
68 | private void update_alpha_status(int i) {
|
---|
69 | if (alpha[i] >= get_C(i))
|
---|
70 | alpha_status[i] = UPPER_BOUND;
|
---|
71 | else if (alpha[i] <= 0)
|
---|
72 | alpha_status[i] = LOWER_BOUND;
|
---|
73 | else alpha_status[i] = FREE;
|
---|
74 | }
|
---|
75 |
|
---|
76 | protected bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
|
---|
77 | protected bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
|
---|
78 |
|
---|
79 | private bool is_free(int i) { return alpha_status[i] == FREE; }
|
---|
80 |
|
---|
81 | public class SolutionInfo {
|
---|
82 | public double obj;
|
---|
83 | public double rho;
|
---|
84 | public double upper_bound_p;
|
---|
85 | public double upper_bound_n;
|
---|
86 | public double r; // for Solver_NU
|
---|
87 | }
|
---|
88 |
|
---|
89 | protected void swap_index(int i, int j) {
|
---|
90 | Q.SwapIndex(i, j);
|
---|
91 | y.SwapIndex(i, j);
|
---|
92 | G.SwapIndex(i, j);
|
---|
93 | alpha_status.SwapIndex(i, j);
|
---|
94 | alpha.SwapIndex(i, j);
|
---|
95 | p.SwapIndex(i, j);
|
---|
96 | active_set.SwapIndex(i, j);
|
---|
97 | G_bar.SwapIndex(i, j);
|
---|
98 | }
|
---|
99 |
|
---|
100 | protected void reconstruct_gradient() {
|
---|
101 | // reconstruct inactive elements of G from G_bar and free variables
|
---|
102 |
|
---|
103 | if (active_size == l) return;
|
---|
104 |
|
---|
105 | int i, j;
|
---|
106 | int nr_free = 0;
|
---|
107 |
|
---|
108 | for (j = active_size; j < l; j++)
|
---|
109 | G[j] = G_bar[j] + p[j];
|
---|
110 |
|
---|
111 | for (j = 0; j < active_size; j++)
|
---|
112 | if (is_free(j))
|
---|
113 | nr_free++;
|
---|
114 |
|
---|
115 | if (2 * nr_free < active_size)
|
---|
116 | Procedures.info("\nWarning: using -h 0 may be faster\n");
|
---|
117 |
|
---|
118 | if (nr_free * l > 2 * active_size * (l - active_size)) {
|
---|
119 | for (i = active_size; i < l; i++) {
|
---|
120 | float[] Q_i = Q.GetQ(i, active_size);
|
---|
121 | for (j = 0; j < active_size; j++)
|
---|
122 | if (is_free(j))
|
---|
123 | G[i] += alpha[j] * Q_i[j];
|
---|
124 | }
|
---|
125 | } else {
|
---|
126 | for (i = 0; i < active_size; i++)
|
---|
127 | if (is_free(i)) {
|
---|
128 | float[] Q_i = Q.GetQ(i, l);
|
---|
129 | double alpha_i = alpha[i];
|
---|
130 | for (j = active_size; j < l; j++)
|
---|
131 | G[j] += alpha_i * Q_i[j];
|
---|
132 | }
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 | public virtual void Solve(int l, IQMatrix Q, double[] p_, sbyte[] y_, double[] alpha_, double Cp, double Cn, double eps, SolutionInfo si, bool shrinking) {
|
---|
137 | this.l = l;
|
---|
138 | this.Q = Q;
|
---|
139 | QD = Q.GetQD();
|
---|
140 | p = (double[])p_.Clone();
|
---|
141 | y = (sbyte[])y_.Clone();
|
---|
142 | alpha = (double[])alpha_.Clone();
|
---|
143 | this.Cp = Cp;
|
---|
144 | this.Cn = Cn;
|
---|
145 | this.EPS = eps;
|
---|
146 | this.unshrink = false;
|
---|
147 |
|
---|
148 | // initialize alpha_status
|
---|
149 | {
|
---|
150 | alpha_status = new byte[l];
|
---|
151 | for (int i = 0; i < l; i++)
|
---|
152 | update_alpha_status(i);
|
---|
153 | }
|
---|
154 |
|
---|
155 | // initialize active set (for shrinking)
|
---|
156 | {
|
---|
157 | active_set = new int[l];
|
---|
158 | for (int i = 0; i < l; i++)
|
---|
159 | active_set[i] = i;
|
---|
160 | active_size = l;
|
---|
161 | }
|
---|
162 |
|
---|
163 | // initialize gradient
|
---|
164 | {
|
---|
165 | G = new double[l];
|
---|
166 | G_bar = new double[l];
|
---|
167 | int i;
|
---|
168 | for (i = 0; i < l; i++) {
|
---|
169 | G[i] = p[i];
|
---|
170 | G_bar[i] = 0;
|
---|
171 | }
|
---|
172 | for (i = 0; i < l; i++)
|
---|
173 | if (!is_lower_bound(i)) {
|
---|
174 | float[] Q_i = Q.GetQ(i, l);
|
---|
175 | double alpha_i = alpha[i];
|
---|
176 | int j;
|
---|
177 | for (j = 0; j < l; j++)
|
---|
178 | G[j] += alpha_i * Q_i[j];
|
---|
179 | if (is_upper_bound(i))
|
---|
180 | for (j = 0; j < l; j++)
|
---|
181 | G_bar[j] += get_C(i) * Q_i[j];
|
---|
182 | }
|
---|
183 | }
|
---|
184 |
|
---|
185 | // optimization step
|
---|
186 |
|
---|
187 | int iter = 0;
|
---|
188 | int counter = Math.Min(l, 1000) + 1;
|
---|
189 | int[] working_set = new int[2];
|
---|
190 |
|
---|
191 | while (true) {
|
---|
192 | // show progress and do shrinking
|
---|
193 |
|
---|
194 | if (--counter == 0) {
|
---|
195 | counter = Math.Min(l, 1000);
|
---|
196 | if (shrinking) do_shrinking();
|
---|
197 | Procedures.info(".");
|
---|
198 | }
|
---|
199 |
|
---|
200 | if (select_working_set(working_set) != 0) {
|
---|
201 | // reconstruct the whole gradient
|
---|
202 | reconstruct_gradient();
|
---|
203 | // reset active set size and check
|
---|
204 | active_size = l;
|
---|
205 | Procedures.info("*");
|
---|
206 | if (select_working_set(working_set) != 0)
|
---|
207 | break;
|
---|
208 | else
|
---|
209 | counter = 1; // do shrinking next iteration
|
---|
210 | }
|
---|
211 |
|
---|
212 | int i = working_set[0];
|
---|
213 | int j = working_set[1];
|
---|
214 |
|
---|
215 | ++iter;
|
---|
216 |
|
---|
217 | // update alpha[i] and alpha[j], handle bounds carefully
|
---|
218 |
|
---|
219 | float[] Q_i = Q.GetQ(i, active_size);
|
---|
220 | float[] Q_j = Q.GetQ(j, active_size);
|
---|
221 |
|
---|
222 | double C_i = get_C(i);
|
---|
223 | double C_j = get_C(j);
|
---|
224 |
|
---|
225 | double old_alpha_i = alpha[i];
|
---|
226 | double old_alpha_j = alpha[j];
|
---|
227 |
|
---|
228 | if (y[i] != y[j]) {
|
---|
229 | double quad_coef = Q_i[i] + Q_j[j] + 2 * Q_i[j];
|
---|
230 | if (quad_coef <= 0)
|
---|
231 | quad_coef = 1e-12;
|
---|
232 | double delta = (-G[i] - G[j]) / quad_coef;
|
---|
233 | double diff = alpha[i] - alpha[j];
|
---|
234 | alpha[i] += delta;
|
---|
235 | alpha[j] += delta;
|
---|
236 |
|
---|
237 | if (diff > 0) {
|
---|
238 | if (alpha[j] < 0) {
|
---|
239 | alpha[j] = 0;
|
---|
240 | alpha[i] = diff;
|
---|
241 | }
|
---|
242 | } else {
|
---|
243 | if (alpha[i] < 0) {
|
---|
244 | alpha[i] = 0;
|
---|
245 | alpha[j] = -diff;
|
---|
246 | }
|
---|
247 | }
|
---|
248 | if (diff > C_i - C_j) {
|
---|
249 | if (alpha[i] > C_i) {
|
---|
250 | alpha[i] = C_i;
|
---|
251 | alpha[j] = C_i - diff;
|
---|
252 | }
|
---|
253 | } else {
|
---|
254 | if (alpha[j] > C_j) {
|
---|
255 | alpha[j] = C_j;
|
---|
256 | alpha[i] = C_j + diff;
|
---|
257 | }
|
---|
258 | }
|
---|
259 | } else {
|
---|
260 | double quad_coef = Q_i[i] + Q_j[j] - 2 * Q_i[j];
|
---|
261 | if (quad_coef <= 0)
|
---|
262 | quad_coef = 1e-12;
|
---|
263 | double delta = (G[i] - G[j]) / quad_coef;
|
---|
264 | double sum = alpha[i] + alpha[j];
|
---|
265 | alpha[i] -= delta;
|
---|
266 | alpha[j] += delta;
|
---|
267 |
|
---|
268 | if (sum > C_i) {
|
---|
269 | if (alpha[i] > C_i) {
|
---|
270 | alpha[i] = C_i;
|
---|
271 | alpha[j] = sum - C_i;
|
---|
272 | }
|
---|
273 | } else {
|
---|
274 | if (alpha[j] < 0) {
|
---|
275 | alpha[j] = 0;
|
---|
276 | alpha[i] = sum;
|
---|
277 | }
|
---|
278 | }
|
---|
279 | if (sum > C_j) {
|
---|
280 | if (alpha[j] > C_j) {
|
---|
281 | alpha[j] = C_j;
|
---|
282 | alpha[i] = sum - C_j;
|
---|
283 | }
|
---|
284 | } else {
|
---|
285 | if (alpha[i] < 0) {
|
---|
286 | alpha[i] = 0;
|
---|
287 | alpha[j] = sum;
|
---|
288 | }
|
---|
289 | }
|
---|
290 | }
|
---|
291 |
|
---|
292 | // update G
|
---|
293 |
|
---|
294 | double delta_alpha_i = alpha[i] - old_alpha_i;
|
---|
295 | double delta_alpha_j = alpha[j] - old_alpha_j;
|
---|
296 |
|
---|
297 | for (int k = 0; k < active_size; k++) {
|
---|
298 | G[k] += Q_i[k] * delta_alpha_i + Q_j[k] * delta_alpha_j;
|
---|
299 | }
|
---|
300 |
|
---|
301 | // update alpha_status and G_bar
|
---|
302 |
|
---|
303 | {
|
---|
304 | bool ui = is_upper_bound(i);
|
---|
305 | bool uj = is_upper_bound(j);
|
---|
306 | update_alpha_status(i);
|
---|
307 | update_alpha_status(j);
|
---|
308 | int k;
|
---|
309 | if (ui != is_upper_bound(i)) {
|
---|
310 | Q_i = Q.GetQ(i, l);
|
---|
311 | if (ui)
|
---|
312 | for (k = 0; k < l; k++)
|
---|
313 | G_bar[k] -= C_i * Q_i[k];
|
---|
314 | else
|
---|
315 | for (k = 0; k < l; k++)
|
---|
316 | G_bar[k] += C_i * Q_i[k];
|
---|
317 | }
|
---|
318 |
|
---|
319 | if (uj != is_upper_bound(j)) {
|
---|
320 | Q_j = Q.GetQ(j, l);
|
---|
321 | if (uj)
|
---|
322 | for (k = 0; k < l; k++)
|
---|
323 | G_bar[k] -= C_j * Q_j[k];
|
---|
324 | else
|
---|
325 | for (k = 0; k < l; k++)
|
---|
326 | G_bar[k] += C_j * Q_j[k];
|
---|
327 | }
|
---|
328 | }
|
---|
329 |
|
---|
330 | }
|
---|
331 |
|
---|
332 | // calculate rho
|
---|
333 |
|
---|
334 | si.rho = calculate_rho();
|
---|
335 |
|
---|
336 | // calculate objective value
|
---|
337 | {
|
---|
338 | double v = 0;
|
---|
339 | int i;
|
---|
340 | for (i = 0; i < l; i++)
|
---|
341 | v += alpha[i] * (G[i] + p[i]);
|
---|
342 |
|
---|
343 | si.obj = v / 2;
|
---|
344 | }
|
---|
345 |
|
---|
346 | // put back the solution
|
---|
347 | {
|
---|
348 | for (int i = 0; i < l; i++)
|
---|
349 | alpha_[active_set[i]] = alpha[i];
|
---|
350 | }
|
---|
351 |
|
---|
352 | si.upper_bound_p = Cp;
|
---|
353 | si.upper_bound_n = Cn;
|
---|
354 |
|
---|
355 | Procedures.info("\noptimization finished, #iter = " + iter + "\n");
|
---|
356 | }
|
---|
357 |
|
---|
358 | // return 1 if already optimal, return 0 otherwise
|
---|
359 | protected virtual int select_working_set(int[] working_set) {
|
---|
360 | // return i,j such that
|
---|
361 | // i: Maximizes -y_i * grad(f)_i, i in I_up(\alpha)
|
---|
362 | // j: mimimizes the decrease of obj value
|
---|
363 | // (if quadratic coefficeint <= 0, replace it with tau)
|
---|
364 | // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
|
---|
365 |
|
---|
366 | double GMax = -INF;
|
---|
367 | double GMax2 = -INF;
|
---|
368 | int GMax_idx = -1;
|
---|
369 | int GMin_idx = -1;
|
---|
370 | double obj_diff_Min = INF;
|
---|
371 |
|
---|
372 | for (int t = 0; t < active_size; t++)
|
---|
373 | if (y[t] == +1) {
|
---|
374 | if (!is_upper_bound(t))
|
---|
375 | if (-G[t] >= GMax) {
|
---|
376 | GMax = -G[t];
|
---|
377 | GMax_idx = t;
|
---|
378 | }
|
---|
379 | } else {
|
---|
380 | if (!is_lower_bound(t))
|
---|
381 | if (G[t] >= GMax) {
|
---|
382 | GMax = G[t];
|
---|
383 | GMax_idx = t;
|
---|
384 | }
|
---|
385 | }
|
---|
386 |
|
---|
387 | int i = GMax_idx;
|
---|
388 | float[] Q_i = null;
|
---|
389 | if (i != -1) // null Q_i not accessed: GMax=-INF if i=-1
|
---|
390 | Q_i = Q.GetQ(i, active_size);
|
---|
391 |
|
---|
392 | for (int j = 0; j < active_size; j++) {
|
---|
393 | if (y[j] == +1) {
|
---|
394 | if (!is_lower_bound(j)) {
|
---|
395 | double grad_diff = GMax + G[j];
|
---|
396 | if (G[j] >= GMax2)
|
---|
397 | GMax2 = G[j];
|
---|
398 | if (grad_diff > 0) {
|
---|
399 | double obj_diff;
|
---|
400 | double quad_coef = Q_i[i] + QD[j] - 2.0 * y[i] * Q_i[j];
|
---|
401 | if (quad_coef > 0)
|
---|
402 | obj_diff = -(grad_diff * grad_diff) / quad_coef;
|
---|
403 | else
|
---|
404 | obj_diff = -(grad_diff * grad_diff) / 1e-12;
|
---|
405 |
|
---|
406 | if (obj_diff <= obj_diff_Min) {
|
---|
407 | GMin_idx = j;
|
---|
408 | obj_diff_Min = obj_diff;
|
---|
409 | }
|
---|
410 | }
|
---|
411 | }
|
---|
412 | } else {
|
---|
413 | if (!is_upper_bound(j)) {
|
---|
414 | double grad_diff = GMax - G[j];
|
---|
415 | if (-G[j] >= GMax2)
|
---|
416 | GMax2 = -G[j];
|
---|
417 | if (grad_diff > 0) {
|
---|
418 | double obj_diff;
|
---|
419 | double quad_coef = Q_i[i] + QD[j] + 2.0 * y[i] * Q_i[j];
|
---|
420 | if (quad_coef > 0)
|
---|
421 | obj_diff = -(grad_diff * grad_diff) / quad_coef;
|
---|
422 | else
|
---|
423 | obj_diff = -(grad_diff * grad_diff) / 1e-12;
|
---|
424 |
|
---|
425 | if (obj_diff <= obj_diff_Min) {
|
---|
426 | GMin_idx = j;
|
---|
427 | obj_diff_Min = obj_diff;
|
---|
428 | }
|
---|
429 | }
|
---|
430 | }
|
---|
431 | }
|
---|
432 | }
|
---|
433 |
|
---|
434 | if (GMax + GMax2 < EPS)
|
---|
435 | return 1;
|
---|
436 |
|
---|
437 | working_set[0] = GMax_idx;
|
---|
438 | working_set[1] = GMin_idx;
|
---|
439 | return 0;
|
---|
440 | }
|
---|
441 |
|
---|
442 | private bool be_shrunk(int i, double GMax1, double GMax2) {
|
---|
443 | if (is_upper_bound(i)) {
|
---|
444 | if (y[i] == +1)
|
---|
445 | return (-G[i] > GMax1);
|
---|
446 | else
|
---|
447 | return (-G[i] > GMax2);
|
---|
448 | } else if (is_lower_bound(i)) {
|
---|
449 | if (y[i] == +1)
|
---|
450 | return (G[i] > GMax2);
|
---|
451 | else
|
---|
452 | return (G[i] > GMax1);
|
---|
453 | } else
|
---|
454 | return (false);
|
---|
455 | }
|
---|
456 |
|
---|
457 | protected virtual void do_shrinking() {
|
---|
458 | int i;
|
---|
459 | double GMax1 = -INF; // Max { -y_i * grad(f)_i | i in I_up(\alpha) }
|
---|
460 | double GMax2 = -INF; // Max { y_i * grad(f)_i | i in I_low(\alpha) }
|
---|
461 |
|
---|
462 | // find Maximal violating pair first
|
---|
463 | for (i = 0; i < active_size; i++) {
|
---|
464 | if (y[i] == +1) {
|
---|
465 | if (!is_upper_bound(i)) {
|
---|
466 | if (-G[i] >= GMax1)
|
---|
467 | GMax1 = -G[i];
|
---|
468 | }
|
---|
469 | if (!is_lower_bound(i)) {
|
---|
470 | if (G[i] >= GMax2)
|
---|
471 | GMax2 = G[i];
|
---|
472 | }
|
---|
473 | } else {
|
---|
474 | if (!is_upper_bound(i)) {
|
---|
475 | if (-G[i] >= GMax2)
|
---|
476 | GMax2 = -G[i];
|
---|
477 | }
|
---|
478 | if (!is_lower_bound(i)) {
|
---|
479 | if (G[i] >= GMax1)
|
---|
480 | GMax1 = G[i];
|
---|
481 | }
|
---|
482 | }
|
---|
483 | }
|
---|
484 |
|
---|
485 | if (unshrink == false && GMax1 + GMax2 <= EPS * 10) {
|
---|
486 | unshrink = true;
|
---|
487 | reconstruct_gradient();
|
---|
488 | active_size = l;
|
---|
489 | }
|
---|
490 |
|
---|
491 | for (i = 0; i < active_size; i++)
|
---|
492 | if (be_shrunk(i, GMax1, GMax2)) {
|
---|
493 | active_size--;
|
---|
494 | while (active_size > i) {
|
---|
495 | if (!be_shrunk(active_size, GMax1, GMax2)) {
|
---|
496 | swap_index(i, active_size);
|
---|
497 | break;
|
---|
498 | }
|
---|
499 | active_size--;
|
---|
500 | }
|
---|
501 | }
|
---|
502 | }
|
---|
503 |
|
---|
504 | protected virtual double calculate_rho() {
|
---|
505 | double r;
|
---|
506 | int nr_free = 0;
|
---|
507 | double ub = INF, lb = -INF, sum_free = 0;
|
---|
508 | for (int i = 0; i < active_size; i++) {
|
---|
509 | double yG = y[i] * G[i];
|
---|
510 |
|
---|
511 | if (is_lower_bound(i)) {
|
---|
512 | if (y[i] > 0)
|
---|
513 | ub = Math.Min(ub, yG);
|
---|
514 | else
|
---|
515 | lb = Math.Max(lb, yG);
|
---|
516 | } else if (is_upper_bound(i)) {
|
---|
517 | if (y[i] < 0)
|
---|
518 | ub = Math.Min(ub, yG);
|
---|
519 | else
|
---|
520 | lb = Math.Max(lb, yG);
|
---|
521 | } else {
|
---|
522 | ++nr_free;
|
---|
523 | sum_free += yG;
|
---|
524 | }
|
---|
525 | }
|
---|
526 |
|
---|
527 | if (nr_free > 0)
|
---|
528 | r = sum_free / nr_free;
|
---|
529 | else
|
---|
530 | r = (ub + lb) / 2;
|
---|
531 |
|
---|
532 | return r;
|
---|
533 | }
|
---|
534 |
|
---|
535 | }
|
---|
536 |
|
---|
537 | //
|
---|
538 | // Solver for nu-svm classification and regression
|
---|
539 | //
|
---|
540 | // additional constraint: e^T \alpha = constant
|
---|
541 | //
|
---|
542 | class Solver_NU : Solver {
|
---|
543 | private SolutionInfo si;
|
---|
544 |
|
---|
545 | public sealed override void Solve(int l, IQMatrix Q, double[] p, sbyte[] y,
|
---|
546 | double[] alpha, double Cp, double Cn, double eps,
|
---|
547 | SolutionInfo si, bool shrinking) {
|
---|
548 | this.si = si;
|
---|
549 | base.Solve(l, Q, p, y, alpha, Cp, Cn, eps, si, shrinking);
|
---|
550 | }
|
---|
551 |
|
---|
552 | // return 1 if already optimal, return 0 otherwise
|
---|
553 | protected override sealed int select_working_set(int[] working_set) {
|
---|
554 | // return i,j such that y_i = y_j and
|
---|
555 | // i: Maximizes -y_i * grad(f)_i, i in I_up(\alpha)
|
---|
556 | // j: Minimizes the decrease of obj value
|
---|
557 | // (if quadratic coefficeint <= 0, replace it with tau)
|
---|
558 | // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
|
---|
559 |
|
---|
560 | double GMaxp = -INF;
|
---|
561 | double GMaxp2 = -INF;
|
---|
562 | int GMaxp_idx = -1;
|
---|
563 |
|
---|
564 | double GMaxn = -INF;
|
---|
565 | double GMaxn2 = -INF;
|
---|
566 | int GMaxn_idx = -1;
|
---|
567 |
|
---|
568 | int GMin_idx = -1;
|
---|
569 | double obj_diff_Min = INF;
|
---|
570 |
|
---|
571 | for (int t = 0; t < active_size; t++)
|
---|
572 | if (y[t] == +1) {
|
---|
573 | if (!is_upper_bound(t))
|
---|
574 | if (-G[t] >= GMaxp) {
|
---|
575 | GMaxp = -G[t];
|
---|
576 | GMaxp_idx = t;
|
---|
577 | }
|
---|
578 | } else {
|
---|
579 | if (!is_lower_bound(t))
|
---|
580 | if (G[t] >= GMaxn) {
|
---|
581 | GMaxn = G[t];
|
---|
582 | GMaxn_idx = t;
|
---|
583 | }
|
---|
584 | }
|
---|
585 |
|
---|
586 | int ip = GMaxp_idx;
|
---|
587 | int iN = GMaxn_idx;
|
---|
588 | float[] Q_ip = null;
|
---|
589 | float[] Q_in = null;
|
---|
590 | if (ip != -1) // null Q_ip not accessed: GMaxp=-INF if ip=-1
|
---|
591 | Q_ip = Q.GetQ(ip, active_size);
|
---|
592 | if (iN != -1)
|
---|
593 | Q_in = Q.GetQ(iN, active_size);
|
---|
594 |
|
---|
595 | for (int j = 0; j < active_size; j++) {
|
---|
596 | if (y[j] == +1) {
|
---|
597 | if (!is_lower_bound(j)) {
|
---|
598 | double grad_diff = GMaxp + G[j];
|
---|
599 | if (G[j] >= GMaxp2)
|
---|
600 | GMaxp2 = G[j];
|
---|
601 | if (grad_diff > 0) {
|
---|
602 | double obj_diff;
|
---|
603 | double quad_coef = Q_ip[ip] + QD[j] - 2 * Q_ip[j];
|
---|
604 | if (quad_coef > 0)
|
---|
605 | obj_diff = -(grad_diff * grad_diff) / quad_coef;
|
---|
606 | else
|
---|
607 | obj_diff = -(grad_diff * grad_diff) / 1e-12;
|
---|
608 |
|
---|
609 | if (obj_diff <= obj_diff_Min) {
|
---|
610 | GMin_idx = j;
|
---|
611 | obj_diff_Min = obj_diff;
|
---|
612 | }
|
---|
613 | }
|
---|
614 | }
|
---|
615 | } else {
|
---|
616 | if (!is_upper_bound(j)) {
|
---|
617 | double grad_diff = GMaxn - G[j];
|
---|
618 | if (-G[j] >= GMaxn2)
|
---|
619 | GMaxn2 = -G[j];
|
---|
620 | if (grad_diff > 0) {
|
---|
621 | double obj_diff;
|
---|
622 | double quad_coef = Q_in[iN] + QD[j] - 2 * Q_in[j];
|
---|
623 | if (quad_coef > 0)
|
---|
624 | obj_diff = -(grad_diff * grad_diff) / quad_coef;
|
---|
625 | else
|
---|
626 | obj_diff = -(grad_diff * grad_diff) / 1e-12;
|
---|
627 |
|
---|
628 | if (obj_diff <= obj_diff_Min) {
|
---|
629 | GMin_idx = j;
|
---|
630 | obj_diff_Min = obj_diff;
|
---|
631 | }
|
---|
632 | }
|
---|
633 | }
|
---|
634 | }
|
---|
635 | }
|
---|
636 |
|
---|
637 | if (Math.Max(GMaxp + GMaxp2, GMaxn + GMaxn2) < EPS)
|
---|
638 | return 1;
|
---|
639 |
|
---|
640 | if (y[GMin_idx] == +1)
|
---|
641 | working_set[0] = GMaxp_idx;
|
---|
642 | else
|
---|
643 | working_set[0] = GMaxn_idx;
|
---|
644 | working_set[1] = GMin_idx;
|
---|
645 |
|
---|
646 | return 0;
|
---|
647 | }
|
---|
648 |
|
---|
649 | private bool be_shrunk(int i, double GMax1, double GMax2, double GMax3, double GMax4) {
|
---|
650 | if (is_upper_bound(i)) {
|
---|
651 | if (y[i] == +1)
|
---|
652 | return (-G[i] > GMax1);
|
---|
653 | else
|
---|
654 | return (-G[i] > GMax4);
|
---|
655 | } else if (is_lower_bound(i)) {
|
---|
656 | if (y[i] == +1)
|
---|
657 | return (G[i] > GMax2);
|
---|
658 | else
|
---|
659 | return (G[i] > GMax3);
|
---|
660 | } else
|
---|
661 | return (false);
|
---|
662 | }
|
---|
663 |
|
---|
664 | protected override sealed void do_shrinking() {
|
---|
665 | double GMax1 = -INF; // Max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
|
---|
666 | double GMax2 = -INF; // Max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
|
---|
667 | double GMax3 = -INF; // Max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
|
---|
668 | double GMax4 = -INF; // Max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
|
---|
669 |
|
---|
670 | // find Maximal violating pair first
|
---|
671 | int i;
|
---|
672 | for (i = 0; i < active_size; i++) {
|
---|
673 | if (!is_upper_bound(i)) {
|
---|
674 | if (y[i] == +1) {
|
---|
675 | if (-G[i] > GMax1) GMax1 = -G[i];
|
---|
676 | } else if (-G[i] > GMax4) GMax4 = -G[i];
|
---|
677 | }
|
---|
678 | if (!is_lower_bound(i)) {
|
---|
679 | if (y[i] == +1) {
|
---|
680 | if (G[i] > GMax2) GMax2 = G[i];
|
---|
681 | } else if (G[i] > GMax3) GMax3 = G[i];
|
---|
682 | }
|
---|
683 | }
|
---|
684 |
|
---|
685 | if (unshrink == false && Math.Max(GMax1 + GMax2, GMax3 + GMax4) <= EPS * 10) {
|
---|
686 | unshrink = true;
|
---|
687 | reconstruct_gradient();
|
---|
688 | active_size = l;
|
---|
689 | }
|
---|
690 |
|
---|
691 | for (i = 0; i < active_size; i++)
|
---|
692 | if (be_shrunk(i, GMax1, GMax2, GMax3, GMax4)) {
|
---|
693 | active_size--;
|
---|
694 | while (active_size > i) {
|
---|
695 | if (!be_shrunk(active_size, GMax1, GMax2, GMax3, GMax4)) {
|
---|
696 | swap_index(i, active_size);
|
---|
697 | break;
|
---|
698 | }
|
---|
699 | active_size--;
|
---|
700 | }
|
---|
701 | }
|
---|
702 | }
|
---|
703 |
|
---|
704 | protected override sealed double calculate_rho() {
|
---|
705 | int nr_free1 = 0, nr_free2 = 0;
|
---|
706 | double ub1 = INF, ub2 = INF;
|
---|
707 | double lb1 = -INF, lb2 = -INF;
|
---|
708 | double sum_free1 = 0, sum_free2 = 0;
|
---|
709 |
|
---|
710 | for (int i = 0; i < active_size; i++) {
|
---|
711 | if (y[i] == +1) {
|
---|
712 | if (is_lower_bound(i))
|
---|
713 | ub1 = Math.Min(ub1, G[i]);
|
---|
714 | else if (is_upper_bound(i))
|
---|
715 | lb1 = Math.Max(lb1, G[i]);
|
---|
716 | else {
|
---|
717 | ++nr_free1;
|
---|
718 | sum_free1 += G[i];
|
---|
719 | }
|
---|
720 | } else {
|
---|
721 | if (is_lower_bound(i))
|
---|
722 | ub2 = Math.Min(ub2, G[i]);
|
---|
723 | else if (is_upper_bound(i))
|
---|
724 | lb2 = Math.Max(lb2, G[i]);
|
---|
725 | else {
|
---|
726 | ++nr_free2;
|
---|
727 | sum_free2 += G[i];
|
---|
728 | }
|
---|
729 | }
|
---|
730 | }
|
---|
731 |
|
---|
732 | double r1, r2;
|
---|
733 | if (nr_free1 > 0)
|
---|
734 | r1 = sum_free1 / nr_free1;
|
---|
735 | else
|
---|
736 | r1 = (ub1 + lb1) / 2;
|
---|
737 |
|
---|
738 | if (nr_free2 > 0)
|
---|
739 | r2 = sum_free2 / nr_free2;
|
---|
740 | else
|
---|
741 | r2 = (ub2 + lb2) / 2;
|
---|
742 |
|
---|
743 | si.r = (r1 + r2) / 2;
|
---|
744 | return (r1 - r2) / 2;
|
---|
745 | }
|
---|
746 | }
|
---|
747 |
|
---|
748 | //
|
---|
749 | // Q matrices for various formulations
|
---|
750 | //
|
---|
751 | class SVC_Q : Kernel {
|
---|
752 | private sbyte[] y;
|
---|
753 | private Cache cache;
|
---|
754 | private float[] QD;
|
---|
755 |
|
---|
756 | public SVC_Q(Problem prob, Parameter param, sbyte[] y_)
|
---|
757 | : base(prob.Count, prob.X, param) {
|
---|
758 | y = (sbyte[])y_.Clone();
|
---|
759 | cache = new Cache(prob.Count, (long)(param.CacheSize * (1 << 20)));
|
---|
760 | QD = new float[prob.Count];
|
---|
761 | for (int i = 0; i < prob.Count; i++)
|
---|
762 | QD[i] = (float)KernelFunction(i, i);
|
---|
763 | }
|
---|
764 |
|
---|
765 | public override sealed float[] GetQ(int i, int len) {
|
---|
766 | float[] data = null;
|
---|
767 | int start, j;
|
---|
768 | if ((start = cache.GetData(i, ref data, len)) < len) {
|
---|
769 | for (j = start; j < len; j++)
|
---|
770 | data[j] = (float)(y[i] * y[j] * KernelFunction(i, j));
|
---|
771 | }
|
---|
772 | return data;
|
---|
773 | }
|
---|
774 |
|
---|
775 | public override sealed float[] GetQD() {
|
---|
776 | return QD;
|
---|
777 | }
|
---|
778 |
|
---|
779 | public override sealed void SwapIndex(int i, int j) {
|
---|
780 | cache.SwapIndex(i, j);
|
---|
781 | base.SwapIndex(i, j);
|
---|
782 | y.SwapIndex(i, j);
|
---|
783 | QD.SwapIndex(i, j);
|
---|
784 | }
|
---|
785 | }
|
---|
786 |
|
---|
787 | class ONE_CLASS_Q : Kernel {
|
---|
788 | private Cache cache;
|
---|
789 | private float[] QD;
|
---|
790 |
|
---|
791 | public ONE_CLASS_Q(Problem prob, Parameter param)
|
---|
792 | : base(prob.Count, prob.X, param) {
|
---|
793 | cache = new Cache(prob.Count, (long)(param.CacheSize * (1 << 20)));
|
---|
794 | QD = new float[prob.Count];
|
---|
795 | for (int i = 0; i < prob.Count; i++)
|
---|
796 | QD[i] = (float)KernelFunction(i, i);
|
---|
797 | }
|
---|
798 |
|
---|
799 | public override sealed float[] GetQ(int i, int len) {
|
---|
800 | float[] data = null;
|
---|
801 | int start, j;
|
---|
802 | if ((start = cache.GetData(i, ref data, len)) < len) {
|
---|
803 | for (j = start; j < len; j++)
|
---|
804 | data[j] = (float)KernelFunction(i, j);
|
---|
805 | }
|
---|
806 | return data;
|
---|
807 | }
|
---|
808 |
|
---|
809 | public override sealed float[] GetQD() {
|
---|
810 | return QD;
|
---|
811 | }
|
---|
812 |
|
---|
813 | public override sealed void SwapIndex(int i, int j) {
|
---|
814 | cache.SwapIndex(i, j);
|
---|
815 | base.SwapIndex(i, j);
|
---|
816 | QD.SwapIndex(i, j);
|
---|
817 | }
|
---|
818 | }
|
---|
819 |
|
---|
820 | class SVR_Q : Kernel {
|
---|
821 | private int l;
|
---|
822 | private Cache cache;
|
---|
823 | private sbyte[] sign;
|
---|
824 | private int[] index;
|
---|
825 | private int next_buffer;
|
---|
826 | private float[][] buffer;
|
---|
827 | private float[] QD;
|
---|
828 |
|
---|
829 | public SVR_Q(Problem prob, Parameter param)
|
---|
830 | : base(prob.Count, prob.X, param) {
|
---|
831 | l = prob.Count;
|
---|
832 | cache = new Cache(l, (long)(param.CacheSize * (1 << 20)));
|
---|
833 | QD = new float[2 * l];
|
---|
834 | sign = new sbyte[2 * l];
|
---|
835 | index = new int[2 * l];
|
---|
836 | for (int k = 0; k < l; k++) {
|
---|
837 | sign[k] = 1;
|
---|
838 | sign[k + l] = -1;
|
---|
839 | index[k] = k;
|
---|
840 | index[k + l] = k;
|
---|
841 | QD[k] = (float)KernelFunction(k, k);
|
---|
842 | QD[k + l] = QD[k];
|
---|
843 | }
|
---|
844 | buffer = new float[2][];
|
---|
845 | buffer[0] = new float[2 * l];
|
---|
846 | buffer[1] = new float[2 * l];
|
---|
847 | next_buffer = 0;
|
---|
848 | }
|
---|
849 |
|
---|
850 | public override sealed void SwapIndex(int i, int j) {
|
---|
851 | sign.SwapIndex(i, j);
|
---|
852 | index.SwapIndex(i, j);
|
---|
853 | QD.SwapIndex(i, j);
|
---|
854 | }
|
---|
855 |
|
---|
856 | public override sealed float[] GetQ(int i, int len) {
|
---|
857 | float[] data = null;
|
---|
858 | int j, real_i = index[i];
|
---|
859 | if (cache.GetData(real_i, ref data, l) < l) {
|
---|
860 | for (j = 0; j < l; j++)
|
---|
861 | data[j] = (float)KernelFunction(real_i, j);
|
---|
862 | }
|
---|
863 |
|
---|
864 | // reorder and copy
|
---|
865 | float[] buf = buffer[next_buffer];
|
---|
866 | next_buffer = 1 - next_buffer;
|
---|
867 | sbyte si = sign[i];
|
---|
868 | for (j = 0; j < len; j++)
|
---|
869 | buf[j] = (float)si * sign[j] * data[index[j]];
|
---|
870 | return buf;
|
---|
871 | }
|
---|
872 |
|
---|
873 | public override sealed float[] GetQD() {
|
---|
874 | return QD;
|
---|
875 | }
|
---|
876 | }
|
---|
877 |
|
---|
878 | internal class Procedures {
|
---|
879 | private static bool _verbose;
|
---|
880 | public static bool IsVerbose {
|
---|
881 | get {
|
---|
882 | return _verbose;
|
---|
883 | }
|
---|
884 | set {
|
---|
885 | _verbose = value;
|
---|
886 | }
|
---|
887 | }
|
---|
888 | //
|
---|
889 | // construct and solve various formulations
|
---|
890 | //
|
---|
891 | public const int LIBSVM_VERSION = 289;
|
---|
892 |
|
---|
893 | public static TextWriter svm_print_string = Console.Out;
|
---|
894 |
|
---|
895 | public static void info(string s) {
|
---|
896 | if (_verbose)
|
---|
897 | svm_print_string.Write(s);
|
---|
898 | }
|
---|
899 |
|
---|
900 | private static void solve_c_svc(Problem prob, Parameter param,
|
---|
901 | double[] alpha, Solver.SolutionInfo si,
|
---|
902 | double Cp, double Cn) {
|
---|
903 | int l = prob.Count;
|
---|
904 | double[] Minus_ones = new double[l];
|
---|
905 | sbyte[] y = new sbyte[l];
|
---|
906 |
|
---|
907 | int i;
|
---|
908 |
|
---|
909 | for (i = 0; i < l; i++) {
|
---|
910 | alpha[i] = 0;
|
---|
911 | Minus_ones[i] = -1;
|
---|
912 | if (prob.Y[i] > 0) y[i] = +1; else y[i] = -1;
|
---|
913 | }
|
---|
914 |
|
---|
915 | Solver s = new Solver();
|
---|
916 | s.Solve(l, new SVC_Q(prob, param, y), Minus_ones, y,
|
---|
917 | alpha, Cp, Cn, param.EPS, si, param.Shrinking);
|
---|
918 |
|
---|
919 | double sum_alpha = 0;
|
---|
920 | for (i = 0; i < l; i++)
|
---|
921 | sum_alpha += alpha[i];
|
---|
922 |
|
---|
923 | if (Cp == Cn)
|
---|
924 | Procedures.info("nu = " + sum_alpha / (Cp * prob.Count) + "\n");
|
---|
925 |
|
---|
926 | for (i = 0; i < l; i++)
|
---|
927 | alpha[i] *= y[i];
|
---|
928 | }
|
---|
929 |
|
---|
930 | private static void solve_nu_svc(Problem prob, Parameter param,
|
---|
931 | double[] alpha, Solver.SolutionInfo si) {
|
---|
932 | int i;
|
---|
933 | int l = prob.Count;
|
---|
934 | double nu = param.Nu;
|
---|
935 |
|
---|
936 | sbyte[] y = new sbyte[l];
|
---|
937 |
|
---|
938 | for (i = 0; i < l; i++)
|
---|
939 | if (prob.Y[i] > 0)
|
---|
940 | y[i] = +1;
|
---|
941 | else
|
---|
942 | y[i] = -1;
|
---|
943 |
|
---|
944 | double sum_pos = nu * l / 2;
|
---|
945 | double sum_neg = nu * l / 2;
|
---|
946 |
|
---|
947 | for (i = 0; i < l; i++)
|
---|
948 | if (y[i] == +1) {
|
---|
949 | alpha[i] = Math.Min(1.0, sum_pos);
|
---|
950 | sum_pos -= alpha[i];
|
---|
951 | } else {
|
---|
952 | alpha[i] = Math.Min(1.0, sum_neg);
|
---|
953 | sum_neg -= alpha[i];
|
---|
954 | }
|
---|
955 |
|
---|
956 | double[] zeros = new double[l];
|
---|
957 |
|
---|
958 | for (i = 0; i < l; i++)
|
---|
959 | zeros[i] = 0;
|
---|
960 |
|
---|
961 | Solver_NU s = new Solver_NU();
|
---|
962 | s.Solve(l, new SVC_Q(prob, param, y), zeros, y, alpha, 1.0, 1.0, param.EPS, si, param.Shrinking);
|
---|
963 | double r = si.r;
|
---|
964 |
|
---|
965 | Procedures.info("C = " + 1 / r + "\n");
|
---|
966 |
|
---|
967 | for (i = 0; i < l; i++)
|
---|
968 | alpha[i] *= y[i] / r;
|
---|
969 |
|
---|
970 | si.rho /= r;
|
---|
971 | si.obj /= (r * r);
|
---|
972 | si.upper_bound_p = 1 / r;
|
---|
973 | si.upper_bound_n = 1 / r;
|
---|
974 | }
|
---|
975 |
|
---|
976 | private static void solve_one_class(Problem prob, Parameter param,
|
---|
977 | double[] alpha, Solver.SolutionInfo si) {
|
---|
978 | int l = prob.Count;
|
---|
979 | double[] zeros = new double[l];
|
---|
980 | sbyte[] ones = new sbyte[l];
|
---|
981 | int i;
|
---|
982 |
|
---|
983 | int n = (int)(param.Nu * prob.Count); // # of alpha's at upper bound
|
---|
984 |
|
---|
985 | for (i = 0; i < n; i++)
|
---|
986 | alpha[i] = 1;
|
---|
987 | if (n < prob.Count)
|
---|
988 | alpha[n] = param.Nu * prob.Count - n;
|
---|
989 | for (i = n + 1; i < l; i++)
|
---|
990 | alpha[i] = 0;
|
---|
991 |
|
---|
992 | for (i = 0; i < l; i++) {
|
---|
993 | zeros[i] = 0;
|
---|
994 | ones[i] = 1;
|
---|
995 | }
|
---|
996 |
|
---|
997 | Solver s = new Solver();
|
---|
998 | s.Solve(l, new ONE_CLASS_Q(prob, param), zeros, ones, alpha, 1.0, 1.0, param.EPS, si, param.Shrinking);
|
---|
999 | }
|
---|
1000 |
|
---|
1001 | private static void solve_epsilon_svr(Problem prob, Parameter param, double[] alpha, Solver.SolutionInfo si) {
|
---|
1002 | int l = prob.Count;
|
---|
1003 | double[] alpha2 = new double[2 * l];
|
---|
1004 | double[] linear_term = new double[2 * l];
|
---|
1005 | sbyte[] y = new sbyte[2 * l];
|
---|
1006 | int i;
|
---|
1007 |
|
---|
1008 | for (i = 0; i < l; i++) {
|
---|
1009 | alpha2[i] = 0;
|
---|
1010 | linear_term[i] = param.P - prob.Y[i];
|
---|
1011 | y[i] = 1;
|
---|
1012 |
|
---|
1013 | alpha2[i + l] = 0;
|
---|
1014 | linear_term[i + l] = param.P + prob.Y[i];
|
---|
1015 | y[i + l] = -1;
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | Solver s = new Solver();
|
---|
1019 | s.Solve(2 * l, new SVR_Q(prob, param), linear_term, y, alpha2, param.C, param.C, param.EPS, si, param.Shrinking);
|
---|
1020 |
|
---|
1021 | double sum_alpha = 0;
|
---|
1022 | for (i = 0; i < l; i++) {
|
---|
1023 | alpha[i] = alpha2[i] - alpha2[i + l];
|
---|
1024 | sum_alpha += Math.Abs(alpha[i]);
|
---|
1025 | }
|
---|
1026 | Procedures.info("nu = " + sum_alpha / (param.C * l) + "\n");
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 | private static void solve_nu_svr(Problem prob, Parameter param,
|
---|
1030 | double[] alpha, Solver.SolutionInfo si) {
|
---|
1031 | int l = prob.Count;
|
---|
1032 | double C = param.C;
|
---|
1033 | double[] alpha2 = new double[2 * l];
|
---|
1034 | double[] linear_term = new double[2 * l];
|
---|
1035 | sbyte[] y = new sbyte[2 * l];
|
---|
1036 | int i;
|
---|
1037 |
|
---|
1038 | double sum = C * param.Nu * l / 2;
|
---|
1039 | for (i = 0; i < l; i++) {
|
---|
1040 | alpha2[i] = alpha2[i + l] = Math.Min(sum, C);
|
---|
1041 | sum -= alpha2[i];
|
---|
1042 |
|
---|
1043 | linear_term[i] = -prob.Y[i];
|
---|
1044 | y[i] = 1;
|
---|
1045 |
|
---|
1046 | linear_term[i + l] = prob.Y[i];
|
---|
1047 | y[i + l] = -1;
|
---|
1048 | }
|
---|
1049 |
|
---|
1050 | Solver_NU s = new Solver_NU();
|
---|
1051 | s.Solve(2 * l, new SVR_Q(prob, param), linear_term, y, alpha2, C, C, param.EPS, si, param.Shrinking);
|
---|
1052 |
|
---|
1053 | Procedures.info("epsilon = " + (-si.r) + "\n");
|
---|
1054 |
|
---|
1055 | for (i = 0; i < l; i++)
|
---|
1056 | alpha[i] = alpha2[i] - alpha2[i + l];
|
---|
1057 | }
|
---|
1058 |
|
---|
1059 | //
|
---|
1060 | // decision_function
|
---|
1061 | //
|
---|
1062 | internal class decision_function {
|
---|
1063 | public double[] alpha;
|
---|
1064 | public double rho;
|
---|
1065 | };
|
---|
1066 |
|
---|
1067 | static decision_function svm_train_one(Problem prob, Parameter param, double Cp, double Cn) {
|
---|
1068 | double[] alpha = new double[prob.Count];
|
---|
1069 | Solver.SolutionInfo si = new Solver.SolutionInfo();
|
---|
1070 | switch (param.SvmType) {
|
---|
1071 | case SvmType.C_SVC:
|
---|
1072 | solve_c_svc(prob, param, alpha, si, Cp, Cn);
|
---|
1073 | break;
|
---|
1074 | case SvmType.NU_SVC:
|
---|
1075 | solve_nu_svc(prob, param, alpha, si);
|
---|
1076 | break;
|
---|
1077 | case SvmType.ONE_CLASS:
|
---|
1078 | solve_one_class(prob, param, alpha, si);
|
---|
1079 | break;
|
---|
1080 | case SvmType.EPSILON_SVR:
|
---|
1081 | solve_epsilon_svr(prob, param, alpha, si);
|
---|
1082 | break;
|
---|
1083 | case SvmType.NU_SVR:
|
---|
1084 | solve_nu_svr(prob, param, alpha, si);
|
---|
1085 | break;
|
---|
1086 | }
|
---|
1087 |
|
---|
1088 | Procedures.info("obj = " + si.obj + ", rho = " + si.rho + "\n");
|
---|
1089 |
|
---|
1090 | // output SVs
|
---|
1091 |
|
---|
1092 | int nSV = 0;
|
---|
1093 | int nBSV = 0;
|
---|
1094 | for (int i = 0; i < prob.Count; i++) {
|
---|
1095 | if (Math.Abs(alpha[i]) > 0) {
|
---|
1096 | ++nSV;
|
---|
1097 | if (prob.Y[i] > 0) {
|
---|
1098 | if (Math.Abs(alpha[i]) >= si.upper_bound_p)
|
---|
1099 | ++nBSV;
|
---|
1100 | } else {
|
---|
1101 | if (Math.Abs(alpha[i]) >= si.upper_bound_n)
|
---|
1102 | ++nBSV;
|
---|
1103 | }
|
---|
1104 | }
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 | Procedures.info("nSV = " + nSV + ", nBSV = " + nBSV + "\n");
|
---|
1108 |
|
---|
1109 | decision_function f = new decision_function();
|
---|
1110 | f.alpha = alpha;
|
---|
1111 | f.rho = si.rho;
|
---|
1112 | return f;
|
---|
1113 | }
|
---|
1114 |
|
---|
1115 | // Platt's binary SVM Probablistic Output: an improvement from Lin et al.
|
---|
1116 | private static void sigmoid_train(int l, double[] dec_values, double[] labels,
|
---|
1117 | double[] probAB) {
|
---|
1118 | double A, B;
|
---|
1119 | double prior1 = 0, prior0 = 0;
|
---|
1120 | int i;
|
---|
1121 |
|
---|
1122 | for (i = 0; i < l; i++)
|
---|
1123 | if (labels[i] > 0) prior1 += 1;
|
---|
1124 | else prior0 += 1;
|
---|
1125 |
|
---|
1126 | int Max_iter = 100; // Maximal number of iterations
|
---|
1127 | double Min_step = 1e-10; // Minimal step taken in line search
|
---|
1128 | double sigma = 1e-12; // For numerically strict PD of Hessian
|
---|
1129 | double eps = 1e-5;
|
---|
1130 | double hiTarget = (prior1 + 1.0) / (prior1 + 2.0);
|
---|
1131 | double loTarget = 1 / (prior0 + 2.0);
|
---|
1132 | double[] t = new double[l];
|
---|
1133 | double fApB, p, q, h11, h22, h21, g1, g2, det, dA, dB, gd, stepsize;
|
---|
1134 | double newA, newB, newf, d1, d2;
|
---|
1135 | int iter;
|
---|
1136 |
|
---|
1137 | // Initial Point and Initial Fun Value
|
---|
1138 | A = 0.0; B = Math.Log((prior0 + 1.0) / (prior1 + 1.0));
|
---|
1139 | double fval = 0.0;
|
---|
1140 |
|
---|
1141 | for (i = 0; i < l; i++) {
|
---|
1142 | if (labels[i] > 0) t[i] = hiTarget;
|
---|
1143 | else t[i] = loTarget;
|
---|
1144 | fApB = dec_values[i] * A + B;
|
---|
1145 | if (fApB >= 0)
|
---|
1146 | fval += t[i] * fApB + Math.Log(1 + Math.Exp(-fApB));
|
---|
1147 | else
|
---|
1148 | fval += (t[i] - 1) * fApB + Math.Log(1 + Math.Exp(fApB));
|
---|
1149 | }
|
---|
1150 | for (iter = 0; iter < Max_iter; iter++) {
|
---|
1151 | // Update Gradient and Hessian (use H' = H + sigma I)
|
---|
1152 | h11 = sigma; // numerically ensures strict PD
|
---|
1153 | h22 = sigma;
|
---|
1154 | h21 = 0.0; g1 = 0.0; g2 = 0.0;
|
---|
1155 | for (i = 0; i < l; i++) {
|
---|
1156 | fApB = dec_values[i] * A + B;
|
---|
1157 | if (fApB >= 0) {
|
---|
1158 | p = Math.Exp(-fApB) / (1.0 + Math.Exp(-fApB));
|
---|
1159 | q = 1.0 / (1.0 + Math.Exp(-fApB));
|
---|
1160 | } else {
|
---|
1161 | p = 1.0 / (1.0 + Math.Exp(fApB));
|
---|
1162 | q = Math.Exp(fApB) / (1.0 + Math.Exp(fApB));
|
---|
1163 | }
|
---|
1164 | d2 = p * q;
|
---|
1165 | h11 += dec_values[i] * dec_values[i] * d2;
|
---|
1166 | h22 += d2;
|
---|
1167 | h21 += dec_values[i] * d2;
|
---|
1168 | d1 = t[i] - p;
|
---|
1169 | g1 += dec_values[i] * d1;
|
---|
1170 | g2 += d1;
|
---|
1171 | }
|
---|
1172 |
|
---|
1173 | // Stopping Criteria
|
---|
1174 | if (Math.Abs(g1) < eps && Math.Abs(g2) < eps)
|
---|
1175 | break;
|
---|
1176 |
|
---|
1177 | // Finding Newton direction: -inv(H') * g
|
---|
1178 | det = h11 * h22 - h21 * h21;
|
---|
1179 | dA = -(h22 * g1 - h21 * g2) / det;
|
---|
1180 | dB = -(-h21 * g1 + h11 * g2) / det;
|
---|
1181 | gd = g1 * dA + g2 * dB;
|
---|
1182 |
|
---|
1183 |
|
---|
1184 | stepsize = 1; // Line Search
|
---|
1185 | while (stepsize >= Min_step) {
|
---|
1186 | newA = A + stepsize * dA;
|
---|
1187 | newB = B + stepsize * dB;
|
---|
1188 |
|
---|
1189 | // New function value
|
---|
1190 | newf = 0.0;
|
---|
1191 | for (i = 0; i < l; i++) {
|
---|
1192 | fApB = dec_values[i] * newA + newB;
|
---|
1193 | if (fApB >= 0)
|
---|
1194 | newf += t[i] * fApB + Math.Log(1 + Math.Exp(-fApB));
|
---|
1195 | else
|
---|
1196 | newf += (t[i] - 1) * fApB + Math.Log(1 + Math.Exp(fApB));
|
---|
1197 | }
|
---|
1198 | // Check sufficient decrease
|
---|
1199 | if (newf < fval + 0.0001 * stepsize * gd) {
|
---|
1200 | A = newA; B = newB; fval = newf;
|
---|
1201 | break;
|
---|
1202 | } else
|
---|
1203 | stepsize = stepsize / 2.0;
|
---|
1204 | }
|
---|
1205 |
|
---|
1206 | if (stepsize < Min_step) {
|
---|
1207 | Procedures.info("Line search fails in two-class probability estimates\n");
|
---|
1208 | break;
|
---|
1209 | }
|
---|
1210 | }
|
---|
1211 |
|
---|
1212 | if (iter >= Max_iter)
|
---|
1213 | Procedures.info("Reaching Maximal iterations in two-class probability estimates\n");
|
---|
1214 | probAB[0] = A; probAB[1] = B;
|
---|
1215 | }
|
---|
1216 |
|
---|
1217 | private static double sigmoid_predict(double decision_value, double A, double B) {
|
---|
1218 | double fApB = decision_value * A + B;
|
---|
1219 | if (fApB >= 0)
|
---|
1220 | return Math.Exp(-fApB) / (1.0 + Math.Exp(-fApB));
|
---|
1221 | else
|
---|
1222 | return 1.0 / (1 + Math.Exp(fApB));
|
---|
1223 | }
|
---|
1224 |
|
---|
1225 | // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
|
---|
1226 | private static void multiclass_probability(int k, double[,] r, double[] p) {
|
---|
1227 | int t, j;
|
---|
1228 | int iter = 0, Max_iter = Math.Max(100, k);
|
---|
1229 | double[,] Q = new double[k, k];
|
---|
1230 | double[] Qp = new double[k];
|
---|
1231 | double pQp, eps = 0.005 / k;
|
---|
1232 |
|
---|
1233 | for (t = 0; t < k; t++) {
|
---|
1234 | p[t] = 1.0 / k; // Valid if k = 1
|
---|
1235 | Q[t, t] = 0;
|
---|
1236 | for (j = 0; j < t; j++) {
|
---|
1237 | Q[t, t] += r[j, t] * r[j, t];
|
---|
1238 | Q[t, j] = Q[j, t];
|
---|
1239 | }
|
---|
1240 | for (j = t + 1; j < k; j++) {
|
---|
1241 | Q[t, t] += r[j, t] * r[j, t];
|
---|
1242 | Q[t, j] = -r[j, t] * r[t, j];
|
---|
1243 | }
|
---|
1244 | }
|
---|
1245 | for (iter = 0; iter < Max_iter; iter++) {
|
---|
1246 | // stopping condition, recalculate QP,pQP for numerical accuracy
|
---|
1247 | pQp = 0;
|
---|
1248 | for (t = 0; t < k; t++) {
|
---|
1249 | Qp[t] = 0;
|
---|
1250 | for (j = 0; j < k; j++)
|
---|
1251 | Qp[t] += Q[t, j] * p[j];
|
---|
1252 | pQp += p[t] * Qp[t];
|
---|
1253 | }
|
---|
1254 | double Max_error = 0;
|
---|
1255 | for (t = 0; t < k; t++) {
|
---|
1256 | double error = Math.Abs(Qp[t] - pQp);
|
---|
1257 | if (error > Max_error)
|
---|
1258 | Max_error = error;
|
---|
1259 | }
|
---|
1260 | if (Max_error < eps) break;
|
---|
1261 |
|
---|
1262 | for (t = 0; t < k; t++) {
|
---|
1263 | double diff = (-Qp[t] + pQp) / Q[t, t];
|
---|
1264 | p[t] += diff;
|
---|
1265 | pQp = (pQp + diff * (diff * Q[t, t] + 2 * Qp[t])) / (1 + diff) / (1 + diff);
|
---|
1266 | for (j = 0; j < k; j++) {
|
---|
1267 | Qp[j] = (Qp[j] + diff * Q[t, j]) / (1 + diff);
|
---|
1268 | p[j] /= (1 + diff);
|
---|
1269 | }
|
---|
1270 | }
|
---|
1271 | }
|
---|
1272 | if (iter >= Max_iter)
|
---|
1273 | Procedures.info("Exceeds Max_iter in multiclass_prob\n");
|
---|
1274 | }
|
---|
1275 |
|
---|
1276 | // Cross-validation decision values for probability estimates
|
---|
1277 | private static void svm_binary_svc_probability(Problem prob, Parameter param, double Cp, double Cn, double[] probAB) {
|
---|
1278 | int i;
|
---|
1279 | int nr_fold = 5;
|
---|
1280 | int[] perm = new int[prob.Count];
|
---|
1281 | double[] dec_values = new double[prob.Count];
|
---|
1282 |
|
---|
1283 | // random shuffle
|
---|
1284 | Random rand = new Random();
|
---|
1285 | for (i = 0; i < prob.Count; i++) perm[i] = i;
|
---|
1286 | for (i = 0; i < prob.Count; i++) {
|
---|
1287 | int j = i + (int)(rand.NextDouble() * (prob.Count - i));
|
---|
1288 | do { int _ = perm[i]; perm[i] = perm[j]; perm[j] = _; } while (false);
|
---|
1289 | }
|
---|
1290 | for (i = 0; i < nr_fold; i++) {
|
---|
1291 | int begin = i * prob.Count / nr_fold;
|
---|
1292 | int end = (i + 1) * prob.Count / nr_fold;
|
---|
1293 | int j, k;
|
---|
1294 | Problem subprob = new Problem();
|
---|
1295 |
|
---|
1296 | subprob.Count = prob.Count - (end - begin);
|
---|
1297 | subprob.X = new Node[subprob.Count][];
|
---|
1298 | subprob.Y = new double[subprob.Count];
|
---|
1299 |
|
---|
1300 | k = 0;
|
---|
1301 | for (j = 0; j < begin; j++) {
|
---|
1302 | subprob.X[k] = prob.X[perm[j]];
|
---|
1303 | subprob.Y[k] = prob.Y[perm[j]];
|
---|
1304 | ++k;
|
---|
1305 | }
|
---|
1306 | for (j = end; j < prob.Count; j++) {
|
---|
1307 | subprob.X[k] = prob.X[perm[j]];
|
---|
1308 | subprob.Y[k] = prob.Y[perm[j]];
|
---|
1309 | ++k;
|
---|
1310 | }
|
---|
1311 | int p_count = 0, n_count = 0;
|
---|
1312 | for (j = 0; j < k; j++)
|
---|
1313 | if (subprob.Y[j] > 0)
|
---|
1314 | p_count++;
|
---|
1315 | else
|
---|
1316 | n_count++;
|
---|
1317 |
|
---|
1318 | if (p_count == 0 && n_count == 0)
|
---|
1319 | for (j = begin; j < end; j++)
|
---|
1320 | dec_values[perm[j]] = 0;
|
---|
1321 | else if (p_count > 0 && n_count == 0)
|
---|
1322 | for (j = begin; j < end; j++)
|
---|
1323 | dec_values[perm[j]] = 1;
|
---|
1324 | else if (p_count == 0 && n_count > 0)
|
---|
1325 | for (j = begin; j < end; j++)
|
---|
1326 | dec_values[perm[j]] = -1;
|
---|
1327 | else {
|
---|
1328 | Parameter subparam = (Parameter)param.Clone();
|
---|
1329 | subparam.Probability = false;
|
---|
1330 | subparam.C = 1.0;
|
---|
1331 | subparam.Weights[1] = Cp;
|
---|
1332 | subparam.Weights[-1] = Cn;
|
---|
1333 | Model submodel = svm_train(subprob, subparam);
|
---|
1334 | for (j = begin; j < end; j++) {
|
---|
1335 | double[] dec_value = new double[1];
|
---|
1336 | svm_predict_values(submodel, prob.X[perm[j]], dec_value);
|
---|
1337 | dec_values[perm[j]] = dec_value[0];
|
---|
1338 | // ensure +1 -1 order; reason not using CV subroutine
|
---|
1339 | dec_values[perm[j]] *= submodel.ClassLabels[0];
|
---|
1340 | }
|
---|
1341 | }
|
---|
1342 | }
|
---|
1343 | sigmoid_train(prob.Count, dec_values, prob.Y, probAB);
|
---|
1344 | }
|
---|
1345 |
|
---|
1346 | // Return parameter of a Laplace distribution
|
---|
1347 | private static double svm_svr_probability(Problem prob, Parameter param) {
|
---|
1348 | int i;
|
---|
1349 | int nr_fold = 5;
|
---|
1350 | double[] ymv = new double[prob.Count];
|
---|
1351 | double mae = 0;
|
---|
1352 |
|
---|
1353 | Parameter newparam = (Parameter)param.Clone();
|
---|
1354 | newparam.Probability = false;
|
---|
1355 | svm_cross_validation(prob, newparam, nr_fold, ymv, true);
|
---|
1356 | for (i = 0; i < prob.Count; i++) {
|
---|
1357 | ymv[i] = prob.Y[i] - ymv[i];
|
---|
1358 | mae += Math.Abs(ymv[i]);
|
---|
1359 | }
|
---|
1360 | mae /= prob.Count;
|
---|
1361 | double std = Math.Sqrt(2 * mae * mae);
|
---|
1362 | int count = 0;
|
---|
1363 | mae = 0;
|
---|
1364 | for (i = 0; i < prob.Count; i++)
|
---|
1365 | if (Math.Abs(ymv[i]) > 5 * std)
|
---|
1366 | count = count + 1;
|
---|
1367 | else
|
---|
1368 | mae += Math.Abs(ymv[i]);
|
---|
1369 | mae /= (prob.Count - count);
|
---|
1370 | Procedures.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + mae + "\n");
|
---|
1371 | return mae;
|
---|
1372 | }
|
---|
1373 |
|
---|
1374 | // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
|
---|
1375 | // perm, length l, must be allocated before calling this subroutine
|
---|
1376 | private static void svm_group_classes(Problem prob, int[] nr_class_ret, int[][] label_ret, int[][] start_ret, int[][] count_ret, int[] perm) {
|
---|
1377 | int l = prob.Count;
|
---|
1378 | int Max_nr_class = 16;
|
---|
1379 | int nr_class = 0;
|
---|
1380 | int[] label = new int[Max_nr_class];
|
---|
1381 | int[] count = new int[Max_nr_class];
|
---|
1382 | int[] data_label = new int[l];
|
---|
1383 | int i;
|
---|
1384 |
|
---|
1385 | for (i = 0; i < l; i++) {
|
---|
1386 | int this_label = (int)(prob.Y[i]);
|
---|
1387 | int j;
|
---|
1388 | for (j = 0; j < nr_class; j++) {
|
---|
1389 | if (this_label == label[j]) {
|
---|
1390 | ++count[j];
|
---|
1391 | break;
|
---|
1392 | }
|
---|
1393 | }
|
---|
1394 | data_label[i] = j;
|
---|
1395 | if (j == nr_class) {
|
---|
1396 | if (nr_class == Max_nr_class) {
|
---|
1397 | Max_nr_class *= 2;
|
---|
1398 | int[] new_data = new int[Max_nr_class];
|
---|
1399 | Array.Copy(label, 0, new_data, 0, label.Length);
|
---|
1400 | label = new_data;
|
---|
1401 | new_data = new int[Max_nr_class];
|
---|
1402 | Array.Copy(count, 0, new_data, 0, count.Length);
|
---|
1403 | count = new_data;
|
---|
1404 | }
|
---|
1405 | label[nr_class] = this_label;
|
---|
1406 | count[nr_class] = 1;
|
---|
1407 | ++nr_class;
|
---|
1408 | }
|
---|
1409 | }
|
---|
1410 |
|
---|
1411 | int[] start = new int[nr_class];
|
---|
1412 | start[0] = 0;
|
---|
1413 | for (i = 1; i < nr_class; i++)
|
---|
1414 | start[i] = start[i - 1] + count[i - 1];
|
---|
1415 | for (i = 0; i < l; i++) {
|
---|
1416 | perm[start[data_label[i]]] = i;
|
---|
1417 | ++start[data_label[i]];
|
---|
1418 | }
|
---|
1419 | start[0] = 0;
|
---|
1420 | for (i = 1; i < nr_class; i++)
|
---|
1421 | start[i] = start[i - 1] + count[i - 1];
|
---|
1422 |
|
---|
1423 | nr_class_ret[0] = nr_class;
|
---|
1424 | label_ret[0] = label;
|
---|
1425 | start_ret[0] = start;
|
---|
1426 | count_ret[0] = count;
|
---|
1427 | }
|
---|
1428 |
|
---|
1429 | //
|
---|
1430 | // Interface functions
|
---|
1431 | //
|
---|
1432 | public static Model svm_train(Problem prob, Parameter param) {
|
---|
1433 | Model model = new Model();
|
---|
1434 | model.Parameter = param;
|
---|
1435 |
|
---|
1436 | if (param.SvmType == SvmType.ONE_CLASS ||
|
---|
1437 | param.SvmType == SvmType.EPSILON_SVR ||
|
---|
1438 | param.SvmType == SvmType.NU_SVR) {
|
---|
1439 | // regression or one-class-svm
|
---|
1440 | model.NumberOfClasses = 2;
|
---|
1441 | model.ClassLabels = null;
|
---|
1442 | model.NumberOfSVPerClass = null;
|
---|
1443 | model.PairwiseProbabilityA = null; model.PairwiseProbabilityB = null;
|
---|
1444 | model.SupportVectorCoefficients = new double[1][];
|
---|
1445 |
|
---|
1446 | if (param.Probability &&
|
---|
1447 | (param.SvmType == SvmType.EPSILON_SVR ||
|
---|
1448 | param.SvmType == SvmType.NU_SVR)) {
|
---|
1449 | model.PairwiseProbabilityA = new double[1];
|
---|
1450 | model.PairwiseProbabilityA[0] = svm_svr_probability(prob, param);
|
---|
1451 | }
|
---|
1452 |
|
---|
1453 | decision_function f = svm_train_one(prob, param, 0, 0);
|
---|
1454 | model.Rho = new double[1];
|
---|
1455 | model.Rho[0] = f.rho;
|
---|
1456 |
|
---|
1457 | int nSV = 0;
|
---|
1458 | int i;
|
---|
1459 | for (i = 0; i < prob.Count; i++)
|
---|
1460 | if (Math.Abs(f.alpha[i]) > 0) ++nSV;
|
---|
1461 | model.SupportVectorCount = nSV;
|
---|
1462 | model.SupportVectorIndizes = new int[nSV];
|
---|
1463 | model.SupportVectors = new Node[nSV][];
|
---|
1464 | model.SupportVectorCoefficients[0] = new double[nSV];
|
---|
1465 |
|
---|
1466 | int j = 0;
|
---|
1467 | for (i = 0; i < prob.Count; i++)
|
---|
1468 | if (Math.Abs(f.alpha[i]) > 0) {
|
---|
1469 | model.SupportVectors[j] = prob.X[i];
|
---|
1470 | model.SupportVectorIndizes[j] = i;
|
---|
1471 | model.SupportVectorCoefficients[0][j] = f.alpha[i];
|
---|
1472 |
|
---|
1473 | ++j;
|
---|
1474 | }
|
---|
1475 | } else {
|
---|
1476 | // classification
|
---|
1477 | int l = prob.Count;
|
---|
1478 | int[] tmp_nr_class = new int[1];
|
---|
1479 | int[][] tmp_label = new int[1][];
|
---|
1480 | int[][] tmp_start = new int[1][];
|
---|
1481 | int[][] tmp_count = new int[1][];
|
---|
1482 | int[] perm = new int[l];
|
---|
1483 |
|
---|
1484 | // group training data of the same class
|
---|
1485 | svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);
|
---|
1486 | int nr_class = tmp_nr_class[0];
|
---|
1487 | int[] label = tmp_label[0];
|
---|
1488 | int[] start = tmp_start[0];
|
---|
1489 | int[] count = tmp_count[0];
|
---|
1490 | Node[][] x = new Node[l][];
|
---|
1491 | int i;
|
---|
1492 | for (i = 0; i < l; i++)
|
---|
1493 | x[i] = prob.X[perm[i]];
|
---|
1494 |
|
---|
1495 | // calculate weighted C
|
---|
1496 |
|
---|
1497 | double[] weighted_C = new double[nr_class];
|
---|
1498 | for (i = 0; i < nr_class; i++)
|
---|
1499 | weighted_C[i] = param.C;
|
---|
1500 | foreach (int weightedLabel in param.Weights.Keys) {
|
---|
1501 | int index = Array.IndexOf<int>(label, weightedLabel);
|
---|
1502 | if (index < 0)
|
---|
1503 | Console.Error.WriteLine("warning: class label " + weightedLabel + " specified in weight is not found");
|
---|
1504 | else weighted_C[index] *= param.Weights[weightedLabel];
|
---|
1505 | }
|
---|
1506 |
|
---|
1507 | // train k*(k-1)/2 models
|
---|
1508 |
|
---|
1509 | bool[] nonzero = new bool[l];
|
---|
1510 | for (i = 0; i < l; i++)
|
---|
1511 | nonzero[i] = false;
|
---|
1512 | decision_function[] f = new decision_function[nr_class * (nr_class - 1) / 2];
|
---|
1513 |
|
---|
1514 | double[] probA = null, probB = null;
|
---|
1515 | if (param.Probability) {
|
---|
1516 | probA = new double[nr_class * (nr_class - 1) / 2];
|
---|
1517 | probB = new double[nr_class * (nr_class - 1) / 2];
|
---|
1518 | }
|
---|
1519 |
|
---|
1520 | int p = 0;
|
---|
1521 | for (i = 0; i < nr_class; i++)
|
---|
1522 | for (int j = i + 1; j < nr_class; j++) {
|
---|
1523 | Problem sub_prob = new Problem();
|
---|
1524 | int si = start[i], sj = start[j];
|
---|
1525 | int ci = count[i], cj = count[j];
|
---|
1526 | sub_prob.Count = ci + cj;
|
---|
1527 | sub_prob.X = new Node[sub_prob.Count][];
|
---|
1528 | sub_prob.Y = new double[sub_prob.Count];
|
---|
1529 | int k;
|
---|
1530 | for (k = 0; k < ci; k++) {
|
---|
1531 | sub_prob.X[k] = x[si + k];
|
---|
1532 | sub_prob.Y[k] = +1;
|
---|
1533 | }
|
---|
1534 | for (k = 0; k < cj; k++) {
|
---|
1535 | sub_prob.X[ci + k] = x[sj + k];
|
---|
1536 | sub_prob.Y[ci + k] = -1;
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 | if (param.Probability) {
|
---|
1540 | double[] probAB = new double[2];
|
---|
1541 | svm_binary_svc_probability(sub_prob, param, weighted_C[i], weighted_C[j], probAB);
|
---|
1542 | probA[p] = probAB[0];
|
---|
1543 | probB[p] = probAB[1];
|
---|
1544 | }
|
---|
1545 |
|
---|
1546 | f[p] = svm_train_one(sub_prob, param, weighted_C[i], weighted_C[j]);
|
---|
1547 | for (k = 0; k < ci; k++)
|
---|
1548 | if (!nonzero[si + k] && Math.Abs(f[p].alpha[k]) > 0)
|
---|
1549 | nonzero[si + k] = true;
|
---|
1550 | for (k = 0; k < cj; k++)
|
---|
1551 | if (!nonzero[sj + k] && Math.Abs(f[p].alpha[ci + k]) > 0)
|
---|
1552 | nonzero[sj + k] = true;
|
---|
1553 | ++p;
|
---|
1554 | }
|
---|
1555 |
|
---|
1556 | // build output
|
---|
1557 |
|
---|
1558 | model.NumberOfClasses = nr_class;
|
---|
1559 |
|
---|
1560 | model.ClassLabels = new int[nr_class];
|
---|
1561 | for (i = 0; i < nr_class; i++)
|
---|
1562 | model.ClassLabels[i] = label[i];
|
---|
1563 |
|
---|
1564 | model.Rho = new double[nr_class * (nr_class - 1) / 2];
|
---|
1565 | for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
---|
1566 | model.Rho[i] = f[i].rho;
|
---|
1567 |
|
---|
1568 | if (param.Probability) {
|
---|
1569 | model.PairwiseProbabilityA = new double[nr_class * (nr_class - 1) / 2];
|
---|
1570 | model.PairwiseProbabilityB = new double[nr_class * (nr_class - 1) / 2];
|
---|
1571 | for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) {
|
---|
1572 | model.PairwiseProbabilityA[i] = probA[i];
|
---|
1573 | model.PairwiseProbabilityB[i] = probB[i];
|
---|
1574 | }
|
---|
1575 | } else {
|
---|
1576 | model.PairwiseProbabilityA = null;
|
---|
1577 | model.PairwiseProbabilityB = null;
|
---|
1578 | }
|
---|
1579 |
|
---|
1580 | int nnz = 0;
|
---|
1581 | int[] nz_count = new int[nr_class];
|
---|
1582 | model.NumberOfSVPerClass = new int[nr_class];
|
---|
1583 | for (i = 0; i < nr_class; i++) {
|
---|
1584 | int nSV = 0;
|
---|
1585 | for (int j = 0; j < count[i]; j++)
|
---|
1586 | if (nonzero[start[i] + j]) {
|
---|
1587 | ++nSV;
|
---|
1588 | ++nnz;
|
---|
1589 | }
|
---|
1590 | model.NumberOfSVPerClass[i] = nSV;
|
---|
1591 | nz_count[i] = nSV;
|
---|
1592 | }
|
---|
1593 |
|
---|
1594 | Procedures.info("Total nSV = " + nnz + "\n");
|
---|
1595 |
|
---|
1596 | model.SupportVectorCount = nnz;
|
---|
1597 | model.SupportVectors = new Node[nnz][];
|
---|
1598 | model.SupportVectorIndizes = new int[nnz];
|
---|
1599 | p = 0;
|
---|
1600 | for (i = 0; i < l; i++) {
|
---|
1601 | if (nonzero[i]) {
|
---|
1602 | model.SupportVectors[p] = x[i];
|
---|
1603 | model.SupportVectorIndizes[p] = i;
|
---|
1604 | p++;
|
---|
1605 | }
|
---|
1606 | }
|
---|
1607 |
|
---|
1608 | int[] nz_start = new int[nr_class];
|
---|
1609 | nz_start[0] = 0;
|
---|
1610 | for (i = 1; i < nr_class; i++)
|
---|
1611 | nz_start[i] = nz_start[i - 1] + nz_count[i - 1];
|
---|
1612 |
|
---|
1613 | model.SupportVectorCoefficients = new double[nr_class - 1][];
|
---|
1614 | for (i = 0; i < nr_class - 1; i++)
|
---|
1615 | model.SupportVectorCoefficients[i] = new double[nnz];
|
---|
1616 |
|
---|
1617 | p = 0;
|
---|
1618 | for (i = 0; i < nr_class; i++)
|
---|
1619 | for (int j = i + 1; j < nr_class; j++) {
|
---|
1620 | // classifier (i,j): coefficients with
|
---|
1621 | // i are in sv_coef[j-1][nz_start[i]...],
|
---|
1622 | // j are in sv_coef[i][nz_start[j]...]
|
---|
1623 |
|
---|
1624 | int si = start[i];
|
---|
1625 | int sj = start[j];
|
---|
1626 | int ci = count[i];
|
---|
1627 | int cj = count[j];
|
---|
1628 |
|
---|
1629 | int q = nz_start[i];
|
---|
1630 | int k;
|
---|
1631 | for (k = 0; k < ci; k++)
|
---|
1632 | if (nonzero[si + k])
|
---|
1633 | model.SupportVectorCoefficients[j - 1][q++] = f[p].alpha[k];
|
---|
1634 | q = nz_start[j];
|
---|
1635 | for (k = 0; k < cj; k++)
|
---|
1636 | if (nonzero[sj + k])
|
---|
1637 | model.SupportVectorCoefficients[i][q++] = f[p].alpha[ci + k];
|
---|
1638 | ++p;
|
---|
1639 | }
|
---|
1640 | }
|
---|
1641 | return model;
|
---|
1642 | }
|
---|
1643 |
|
---|
1644 | // Stratified cross validation
|
---|
1645 | public static void svm_cross_validation(Problem prob, Parameter param, int nr_fold, double[] target, bool shuffleTraining) {
|
---|
1646 | Random rand = new Random();
|
---|
1647 | int i;
|
---|
1648 | int[] fold_start = new int[nr_fold + 1];
|
---|
1649 | int l = prob.Count;
|
---|
1650 | int[] perm = new int[l];
|
---|
1651 |
|
---|
1652 | // stratified cv may not give leave-one-out rate
|
---|
1653 | // Each class to l folds -> some folds may have zero elements
|
---|
1654 | if ((param.SvmType == SvmType.C_SVC ||
|
---|
1655 | param.SvmType == SvmType.NU_SVC) && nr_fold < l) {
|
---|
1656 | int[] tmp_nr_class = new int[1];
|
---|
1657 | int[][] tmp_label = new int[1][];
|
---|
1658 | int[][] tmp_start = new int[1][];
|
---|
1659 | int[][] tmp_count = new int[1][];
|
---|
1660 |
|
---|
1661 | svm_group_classes(prob, tmp_nr_class, tmp_label, tmp_start, tmp_count, perm);
|
---|
1662 |
|
---|
1663 | int nr_class = tmp_nr_class[0];
|
---|
1664 | int[] label = tmp_label[0];
|
---|
1665 | int[] start = tmp_start[0];
|
---|
1666 | int[] count = tmp_count[0];
|
---|
1667 |
|
---|
1668 | // random shuffle and then data grouped by fold using the array perm
|
---|
1669 | int[] fold_count = new int[nr_fold];
|
---|
1670 | int c;
|
---|
1671 | int[] index = new int[l];
|
---|
1672 | for (i = 0; i < l; i++)
|
---|
1673 | index[i] = perm[i];
|
---|
1674 | for (c = 0; c < nr_class; c++)
|
---|
1675 | for (i = 0; i < count[c]; i++) {
|
---|
1676 | int j = i + (int)(rand.NextDouble() * (count[c] - i));
|
---|
1677 | do { int _ = index[start[c] + j]; index[start[c] + j] = index[start[c] + i]; index[start[c] + i] = _; } while (false);
|
---|
1678 | }
|
---|
1679 | for (i = 0; i < nr_fold; i++) {
|
---|
1680 | fold_count[i] = 0;
|
---|
1681 | for (c = 0; c < nr_class; c++)
|
---|
1682 | fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold;
|
---|
1683 | }
|
---|
1684 | fold_start[0] = 0;
|
---|
1685 | for (i = 1; i <= nr_fold; i++)
|
---|
1686 | fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
|
---|
1687 | for (c = 0; c < nr_class; c++)
|
---|
1688 | for (i = 0; i < nr_fold; i++) {
|
---|
1689 | int begin = start[c] + i * count[c] / nr_fold;
|
---|
1690 | int end = start[c] + (i + 1) * count[c] / nr_fold;
|
---|
1691 | for (int j = begin; j < end; j++) {
|
---|
1692 | perm[fold_start[i]] = index[j];
|
---|
1693 | fold_start[i]++;
|
---|
1694 | }
|
---|
1695 | }
|
---|
1696 | fold_start[0] = 0;
|
---|
1697 | for (i = 1; i <= nr_fold; i++)
|
---|
1698 | fold_start[i] = fold_start[i - 1] + fold_count[i - 1];
|
---|
1699 | } else {
|
---|
1700 | for (i = 0; i < l; i++) perm[i] = i;
|
---|
1701 | if (shuffleTraining) {
|
---|
1702 | for (i = 0; i < l; i++) {
|
---|
1703 | int j = i + (int)(rand.NextDouble() * (l - i));
|
---|
1704 | do { int _ = perm[i]; perm[i] = perm[j]; perm[j] = _; } while (false);
|
---|
1705 | }
|
---|
1706 | }
|
---|
1707 | for (i = 0; i <= nr_fold; i++)
|
---|
1708 | fold_start[i] = i * l / nr_fold;
|
---|
1709 | }
|
---|
1710 |
|
---|
1711 | for (i = 0; i < nr_fold; i++) {
|
---|
1712 | int begin = fold_start[i];
|
---|
1713 | int end = fold_start[i + 1];
|
---|
1714 | int j, k;
|
---|
1715 | Problem subprob = new Problem();
|
---|
1716 |
|
---|
1717 | subprob.Count = l - (end - begin);
|
---|
1718 | subprob.X = new Node[subprob.Count][];
|
---|
1719 | subprob.Y = new double[subprob.Count];
|
---|
1720 |
|
---|
1721 | k = 0;
|
---|
1722 | for (j = 0; j < begin; j++) {
|
---|
1723 | subprob.X[k] = prob.X[perm[j]];
|
---|
1724 | subprob.Y[k] = prob.Y[perm[j]];
|
---|
1725 | ++k;
|
---|
1726 | }
|
---|
1727 | for (j = end; j < l; j++) {
|
---|
1728 | subprob.X[k] = prob.X[perm[j]];
|
---|
1729 | subprob.Y[k] = prob.Y[perm[j]];
|
---|
1730 | ++k;
|
---|
1731 | }
|
---|
1732 | Model submodel = svm_train(subprob, param);
|
---|
1733 | if (param.Probability &&
|
---|
1734 | (param.SvmType == SvmType.C_SVC ||
|
---|
1735 | param.SvmType == SvmType.NU_SVC)) {
|
---|
1736 | double[] prob_estimates = new double[svm_get_nr_class(submodel)];
|
---|
1737 | for (j = begin; j < end; j++)
|
---|
1738 | target[perm[j]] = svm_predict_probability(submodel, prob.X[perm[j]], prob_estimates);
|
---|
1739 | } else
|
---|
1740 | for (j = begin; j < end; j++)
|
---|
1741 | target[perm[j]] = svm_predict(submodel, prob.X[perm[j]]);
|
---|
1742 | }
|
---|
1743 | }
|
---|
1744 |
|
---|
1745 | public static SvmType svm_get_svm_type(Model model) {
|
---|
1746 | return model.Parameter.SvmType;
|
---|
1747 | }
|
---|
1748 |
|
---|
1749 | public static int svm_get_nr_class(Model model) {
|
---|
1750 | return model.NumberOfClasses;
|
---|
1751 | }
|
---|
1752 |
|
---|
1753 | public static void svm_get_labels(Model model, int[] label) {
|
---|
1754 | if (model.ClassLabels != null)
|
---|
1755 | for (int i = 0; i < model.NumberOfClasses; i++)
|
---|
1756 | label[i] = model.ClassLabels[i];
|
---|
1757 | }
|
---|
1758 |
|
---|
1759 | public static double svm_get_svr_probability(Model model) {
|
---|
1760 | if ((model.Parameter.SvmType == SvmType.EPSILON_SVR || model.Parameter.SvmType == SvmType.NU_SVR) &&
|
---|
1761 | model.PairwiseProbabilityA != null)
|
---|
1762 | return model.PairwiseProbabilityA[0];
|
---|
1763 | else {
|
---|
1764 | Console.Error.WriteLine("Model doesn't contain information for SVR probability inference");
|
---|
1765 | return 0;
|
---|
1766 | }
|
---|
1767 | }
|
---|
1768 |
|
---|
1769 | public static void svm_predict_values(Model model, Node[] x, double[] dec_values) {
|
---|
1770 | if (model.Parameter.SvmType == SvmType.ONE_CLASS ||
|
---|
1771 | model.Parameter.SvmType == SvmType.EPSILON_SVR ||
|
---|
1772 | model.Parameter.SvmType == SvmType.NU_SVR) {
|
---|
1773 | double[] sv_coef = model.SupportVectorCoefficients[0];
|
---|
1774 | double sum = 0;
|
---|
1775 | for (int i = 0; i < model.SupportVectorCount; i++)
|
---|
1776 | sum += sv_coef[i] * Kernel.KernelFunction(x, model.SupportVectors[i], model.Parameter);
|
---|
1777 | sum -= model.Rho[0];
|
---|
1778 | dec_values[0] = sum;
|
---|
1779 | } else {
|
---|
1780 | int i;
|
---|
1781 | int nr_class = model.NumberOfClasses;
|
---|
1782 | int l = model.SupportVectorCount;
|
---|
1783 |
|
---|
1784 | double[] kvalue = new double[l];
|
---|
1785 | for (i = 0; i < l; i++)
|
---|
1786 | kvalue[i] = Kernel.KernelFunction(x, model.SupportVectors[i], model.Parameter);
|
---|
1787 |
|
---|
1788 | int[] start = new int[nr_class];
|
---|
1789 | start[0] = 0;
|
---|
1790 | for (i = 1; i < nr_class; i++)
|
---|
1791 | start[i] = start[i - 1] + model.NumberOfSVPerClass[i - 1];
|
---|
1792 |
|
---|
1793 | int p = 0;
|
---|
1794 | for (i = 0; i < nr_class; i++)
|
---|
1795 | for (int j = i + 1; j < nr_class; j++) {
|
---|
1796 | double sum = 0;
|
---|
1797 | int si = start[i];
|
---|
1798 | int sj = start[j];
|
---|
1799 | int ci = model.NumberOfSVPerClass[i];
|
---|
1800 | int cj = model.NumberOfSVPerClass[j];
|
---|
1801 |
|
---|
1802 | int k;
|
---|
1803 | double[] coef1 = model.SupportVectorCoefficients[j - 1];
|
---|
1804 | double[] coef2 = model.SupportVectorCoefficients[i];
|
---|
1805 | for (k = 0; k < ci; k++)
|
---|
1806 | sum += coef1[si + k] * kvalue[si + k];
|
---|
1807 | for (k = 0; k < cj; k++)
|
---|
1808 | sum += coef2[sj + k] * kvalue[sj + k];
|
---|
1809 | sum -= model.Rho[p];
|
---|
1810 | dec_values[p] = sum;
|
---|
1811 | p++;
|
---|
1812 | }
|
---|
1813 | }
|
---|
1814 | }
|
---|
1815 |
|
---|
1816 | public static double svm_predict(Model model, Node[] x) {
|
---|
1817 | if (model.Parameter.SvmType == SvmType.ONE_CLASS ||
|
---|
1818 | model.Parameter.SvmType == SvmType.EPSILON_SVR ||
|
---|
1819 | model.Parameter.SvmType == SvmType.NU_SVR) {
|
---|
1820 | double[] res = new double[1];
|
---|
1821 | svm_predict_values(model, x, res);
|
---|
1822 |
|
---|
1823 | if (model.Parameter.SvmType == SvmType.ONE_CLASS)
|
---|
1824 | return (res[0] > 0) ? 1 : -1;
|
---|
1825 | else
|
---|
1826 | return res[0];
|
---|
1827 | } else {
|
---|
1828 | int i;
|
---|
1829 | int nr_class = model.NumberOfClasses;
|
---|
1830 | double[] dec_values = new double[nr_class * (nr_class - 1) / 2];
|
---|
1831 | svm_predict_values(model, x, dec_values);
|
---|
1832 |
|
---|
1833 | int[] vote = new int[nr_class];
|
---|
1834 | for (i = 0; i < nr_class; i++)
|
---|
1835 | vote[i] = 0;
|
---|
1836 | int pos = 0;
|
---|
1837 | for (i = 0; i < nr_class; i++)
|
---|
1838 | for (int j = i + 1; j < nr_class; j++) {
|
---|
1839 | if (dec_values[pos++] > 0)
|
---|
1840 | ++vote[i];
|
---|
1841 | else
|
---|
1842 | ++vote[j];
|
---|
1843 | }
|
---|
1844 |
|
---|
1845 | int vote_Max_idx = 0;
|
---|
1846 | for (i = 1; i < nr_class; i++)
|
---|
1847 | if (vote[i] > vote[vote_Max_idx])
|
---|
1848 | vote_Max_idx = i;
|
---|
1849 | return model.ClassLabels[vote_Max_idx];
|
---|
1850 | }
|
---|
1851 | }
|
---|
1852 |
|
---|
1853 | public static double svm_predict_probability(Model model, Node[] x, double[] prob_estimates) {
|
---|
1854 | if ((model.Parameter.SvmType == SvmType.C_SVC || model.Parameter.SvmType == SvmType.NU_SVC) &&
|
---|
1855 | model.PairwiseProbabilityA != null && model.PairwiseProbabilityB != null) {
|
---|
1856 | int i;
|
---|
1857 | int nr_class = model.NumberOfClasses;
|
---|
1858 | double[] dec_values = new double[nr_class * (nr_class - 1) / 2];
|
---|
1859 | svm_predict_values(model, x, dec_values);
|
---|
1860 |
|
---|
1861 | double Min_prob = 1e-7;
|
---|
1862 | double[,] pairwise_prob = new double[nr_class, nr_class];
|
---|
1863 |
|
---|
1864 | int k = 0;
|
---|
1865 | for (i = 0; i < nr_class; i++) {
|
---|
1866 | for (int j = i + 1; j < nr_class; j++) {
|
---|
1867 | pairwise_prob[i, j] = Math.Min(Math.Max(sigmoid_predict(dec_values[k], model.PairwiseProbabilityA[k], model.PairwiseProbabilityB[k]), Min_prob), 1 - Min_prob);
|
---|
1868 | pairwise_prob[j, i] = 1 - pairwise_prob[i, j];
|
---|
1869 | k++;
|
---|
1870 | }
|
---|
1871 | }
|
---|
1872 | multiclass_probability(nr_class, pairwise_prob, prob_estimates);
|
---|
1873 |
|
---|
1874 | int prob_Max_idx = 0;
|
---|
1875 | for (i = 1; i < nr_class; i++)
|
---|
1876 | if (prob_estimates[i] > prob_estimates[prob_Max_idx])
|
---|
1877 | prob_Max_idx = i;
|
---|
1878 | return model.ClassLabels[prob_Max_idx];
|
---|
1879 | } else
|
---|
1880 | return svm_predict(model, x);
|
---|
1881 | }
|
---|
1882 |
|
---|
1883 | public static string svm_check_parameter(Problem prob, Parameter param) {
|
---|
1884 | // svm_type
|
---|
1885 |
|
---|
1886 | SvmType svm_type = param.SvmType;
|
---|
1887 |
|
---|
1888 | // kernel_type, degree
|
---|
1889 |
|
---|
1890 | KernelType kernel_type = param.KernelType;
|
---|
1891 |
|
---|
1892 | if (param.Degree < 0)
|
---|
1893 | return "degree of polynomial kernel < 0";
|
---|
1894 |
|
---|
1895 | // cache_size,eps,C,nu,p,shrinking
|
---|
1896 |
|
---|
1897 | if (param.CacheSize <= 0)
|
---|
1898 | return "cache_size <= 0";
|
---|
1899 |
|
---|
1900 | if (param.EPS <= 0)
|
---|
1901 | return "eps <= 0";
|
---|
1902 |
|
---|
1903 | if (param.Gamma == 0)
|
---|
1904 | param.Gamma = 1.0 / prob.MaxIndex;
|
---|
1905 |
|
---|
1906 | if (svm_type == SvmType.C_SVC ||
|
---|
1907 | svm_type == SvmType.EPSILON_SVR ||
|
---|
1908 | svm_type == SvmType.NU_SVR)
|
---|
1909 | if (param.C <= 0)
|
---|
1910 | return "C <= 0";
|
---|
1911 |
|
---|
1912 | if (svm_type == SvmType.NU_SVC ||
|
---|
1913 | svm_type == SvmType.ONE_CLASS ||
|
---|
1914 | svm_type == SvmType.NU_SVR)
|
---|
1915 | if (param.Nu <= 0 || param.Nu > 1)
|
---|
1916 | return "nu <= 0 or nu > 1";
|
---|
1917 |
|
---|
1918 | if (svm_type == SvmType.EPSILON_SVR)
|
---|
1919 | if (param.P < 0)
|
---|
1920 | return "p < 0";
|
---|
1921 |
|
---|
1922 | if (param.Probability &&
|
---|
1923 | svm_type == SvmType.ONE_CLASS)
|
---|
1924 | return "one-class SVM probability output not supported yet";
|
---|
1925 |
|
---|
1926 | // check whether nu-svc is feasible
|
---|
1927 |
|
---|
1928 | if (svm_type == SvmType.NU_SVC) {
|
---|
1929 | int l = prob.Count;
|
---|
1930 | int Max_nr_class = 16;
|
---|
1931 | int nr_class = 0;
|
---|
1932 | int[] label = new int[Max_nr_class];
|
---|
1933 | int[] count = new int[Max_nr_class];
|
---|
1934 |
|
---|
1935 | int i;
|
---|
1936 | for (i = 0; i < l; i++) {
|
---|
1937 | int this_label = (int)prob.Y[i];
|
---|
1938 | int j;
|
---|
1939 | for (j = 0; j < nr_class; j++)
|
---|
1940 | if (this_label == label[j]) {
|
---|
1941 | ++count[j];
|
---|
1942 | break;
|
---|
1943 | }
|
---|
1944 |
|
---|
1945 | if (j == nr_class) {
|
---|
1946 | if (nr_class == Max_nr_class) {
|
---|
1947 | Max_nr_class *= 2;
|
---|
1948 | int[] new_data = new int[Max_nr_class];
|
---|
1949 | Array.Copy(label, 0, new_data, 0, label.Length);
|
---|
1950 | label = new_data;
|
---|
1951 |
|
---|
1952 | new_data = new int[Max_nr_class];
|
---|
1953 | Array.Copy(count, 0, new_data, 0, count.Length);
|
---|
1954 | count = new_data;
|
---|
1955 | }
|
---|
1956 | label[nr_class] = this_label;
|
---|
1957 | count[nr_class] = 1;
|
---|
1958 | ++nr_class;
|
---|
1959 | }
|
---|
1960 | }
|
---|
1961 |
|
---|
1962 | for (i = 0; i < nr_class; i++) {
|
---|
1963 | int n1 = count[i];
|
---|
1964 | for (int j = i + 1; j < nr_class; j++) {
|
---|
1965 | int n2 = count[j];
|
---|
1966 | if (param.Nu * (n1 + n2) / 2 > Math.Min(n1, n2))
|
---|
1967 | return "specified nu is infeasible";
|
---|
1968 | }
|
---|
1969 | }
|
---|
1970 | }
|
---|
1971 |
|
---|
1972 | return null;
|
---|
1973 | }
|
---|
1974 |
|
---|
1975 | public static int svm_check_probability_model(Model model) {
|
---|
1976 | if (((model.Parameter.SvmType == SvmType.C_SVC || model.Parameter.SvmType == SvmType.NU_SVC) &&
|
---|
1977 | model.PairwiseProbabilityA != null && model.PairwiseProbabilityB != null) ||
|
---|
1978 | ((model.Parameter.SvmType == SvmType.EPSILON_SVR || model.Parameter.SvmType == SvmType.NU_SVR) &&
|
---|
1979 | model.PairwiseProbabilityA != null))
|
---|
1980 | return 1;
|
---|
1981 | else
|
---|
1982 | return 0;
|
---|
1983 | }
|
---|
1984 | }
|
---|
1985 | }
|
---|