[2645] | 1 | /*
|
---|
| 2 | * SVM.NET Library
|
---|
| 3 | * Copyright (C) 2008 Matthew Johnson
|
---|
| 4 | *
|
---|
| 5 | * This program is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * This program is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | using System;
|
---|
| 21 | using System.Collections.Generic;
|
---|
| 22 |
|
---|
| 23 | namespace SVM
|
---|
| 24 | {
|
---|
| 25 | /// <summary>
|
---|
| 26 | /// Class encapsulating a precomputed kernel, where each position indicates the similarity score for two items in the training data.
|
---|
| 27 | /// </summary>
|
---|
| 28 | [Serializable]
|
---|
| 29 | public class PrecomputedKernel
|
---|
| 30 | {
|
---|
| 31 | private float[,] _similarities;
|
---|
| 32 | private int _rows;
|
---|
| 33 | private int _columns;
|
---|
| 34 |
|
---|
| 35 | /// <summary>
|
---|
| 36 | /// Constructor.
|
---|
| 37 | /// </summary>
|
---|
| 38 | /// <param name="similarities">The similarity scores between all items in the training data</param>
|
---|
| 39 | public PrecomputedKernel(float[,] similarities)
|
---|
| 40 | {
|
---|
| 41 | _similarities = similarities;
|
---|
| 42 | _rows = _similarities.GetLength(0);
|
---|
| 43 | _columns = _similarities.GetLength(1);
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | /// <summary>
|
---|
| 47 | /// Constructor.
|
---|
| 48 | /// </summary>
|
---|
| 49 | /// <param name="nodes">Nodes for self-similarity analysis</param>
|
---|
| 50 | /// <param name="param">Parameters to use when computing similarities</param>
|
---|
| 51 | public PrecomputedKernel(List<Node[]> nodes, Parameter param)
|
---|
| 52 | {
|
---|
| 53 | _rows = nodes.Count;
|
---|
| 54 | _columns = _rows;
|
---|
| 55 | _similarities = new float[_rows, _columns];
|
---|
| 56 | for (int r = 0; r < _rows; r++)
|
---|
| 57 | {
|
---|
| 58 | for (int c = 0; c < r; c++)
|
---|
| 59 | _similarities[r, c] = _similarities[c, r];
|
---|
| 60 | _similarities[r, r] = 1;
|
---|
| 61 | for (int c = r + 1; c < _columns; c++)
|
---|
| 62 | _similarities[r, c] = (float)Kernel.KernelFunction(nodes[r], nodes[c], param);
|
---|
| 63 | }
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | /// <summary>
|
---|
| 67 | /// Constructor.
|
---|
| 68 | /// </summary>
|
---|
| 69 | /// <param name="rows">Nodes to use as the rows of the matrix</param>
|
---|
| 70 | /// <param name="columns">Nodes to use as the columns of the matrix</param>
|
---|
| 71 | /// <param name="param">Parameters to use when compute similarities</param>
|
---|
| 72 | public PrecomputedKernel(List<Node[]> rows, List<Node[]> columns, Parameter param)
|
---|
| 73 | {
|
---|
| 74 | _rows = rows.Count;
|
---|
| 75 | _columns = columns.Count;
|
---|
| 76 | _similarities = new float[_rows, _columns];
|
---|
| 77 | for (int r = 0; r < _rows; r++)
|
---|
| 78 | for (int c = 0; c < _columns; c++)
|
---|
| 79 | _similarities[r, c] = (float)Kernel.KernelFunction(rows[r], columns[c], param);
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | /// <summary>
|
---|
| 83 | /// Constructs a <see cref="Problem"/> object using the labels provided. If a label is set to "0" that item is ignored.
|
---|
| 84 | /// </summary>
|
---|
| 85 | /// <param name="rowLabels">The labels for the row items</param>
|
---|
| 86 | /// <param name="columnLabels">The labels for the column items</param>
|
---|
| 87 | /// <returns>A <see cref="Problem"/> object</returns>
|
---|
| 88 | public Problem Compute(double[] rowLabels, double[] columnLabels)
|
---|
| 89 | {
|
---|
| 90 | List<Node[]> X = new List<Node[]>();
|
---|
| 91 | List<double> Y = new List<double>();
|
---|
| 92 | int maxIndex = 0;
|
---|
| 93 | for (int i = 0; i < columnLabels.Length; i++)
|
---|
| 94 | if (columnLabels[i] != 0)
|
---|
| 95 | maxIndex++;
|
---|
| 96 | maxIndex++;
|
---|
| 97 | for (int r = 0; r < _rows; r++)
|
---|
| 98 | {
|
---|
| 99 | if (rowLabels[r] == 0)
|
---|
| 100 | continue;
|
---|
| 101 | List<Node> nodes = new List<Node>();
|
---|
| 102 | nodes.Add(new Node(0, X.Count + 1));
|
---|
| 103 | for (int c = 0; c < _columns; c++)
|
---|
| 104 | {
|
---|
| 105 | if (columnLabels[c] == 0)
|
---|
| 106 | continue;
|
---|
| 107 | double value = _similarities[r, c];
|
---|
| 108 | nodes.Add(new Node(nodes.Count, value));
|
---|
| 109 | }
|
---|
| 110 | X.Add(nodes.ToArray());
|
---|
| 111 | Y.Add(rowLabels[r]);
|
---|
| 112 | }
|
---|
| 113 | return new Problem(X.Count, Y.ToArray(), X.ToArray(), maxIndex);
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | }
|
---|
| 117 | }
|
---|