[2645] | 1 | /*
|
---|
| 2 | * SVM.NET Library
|
---|
| 3 | * Copyright (C) 2008 Matthew Johnson
|
---|
| 4 | *
|
---|
| 5 | * This program is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * This program is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | using System;
|
---|
| 21 | using System.Collections.Generic;
|
---|
| 22 |
|
---|
[4068] | 23 | namespace SVM {
|
---|
| 24 | /// <summary>
|
---|
| 25 | /// Contains all of the types of SVM this library can model.
|
---|
| 26 | /// </summary>
|
---|
| 27 | public enum SvmType {
|
---|
[2645] | 28 | /// <summary>
|
---|
[4068] | 29 | /// C-SVC.
|
---|
[2645] | 30 | /// </summary>
|
---|
[4068] | 31 | C_SVC,
|
---|
[2645] | 32 | /// <summary>
|
---|
[4068] | 33 | /// nu-SVC.
|
---|
[2645] | 34 | /// </summary>
|
---|
[4068] | 35 | NU_SVC,
|
---|
[2645] | 36 | /// <summary>
|
---|
[4068] | 37 | /// one-class SVM
|
---|
[2645] | 38 | /// </summary>
|
---|
[4068] | 39 | ONE_CLASS,
|
---|
| 40 | /// <summary>
|
---|
| 41 | /// epsilon-SVR
|
---|
| 42 | /// </summary>
|
---|
| 43 | EPSILON_SVR,
|
---|
| 44 | /// <summary>
|
---|
| 45 | /// nu-SVR
|
---|
| 46 | /// </summary>
|
---|
| 47 | NU_SVR
|
---|
| 48 | };
|
---|
| 49 | /// <summary>
|
---|
| 50 | /// Contains the various kernel types this library can use.
|
---|
| 51 | /// </summary>
|
---|
| 52 | public enum KernelType {
|
---|
| 53 | /// <summary>
|
---|
| 54 | /// Linear: u'*v
|
---|
| 55 | /// </summary>
|
---|
| 56 | LINEAR,
|
---|
| 57 | /// <summary>
|
---|
| 58 | /// Polynomial: (gamma*u'*v + coef0)^degree
|
---|
| 59 | /// </summary>
|
---|
| 60 | POLY,
|
---|
| 61 | /// <summary>
|
---|
| 62 | /// Radial basis function: exp(-gamma*|u-v|^2)
|
---|
| 63 | /// </summary>
|
---|
| 64 | RBF,
|
---|
| 65 | /// <summary>
|
---|
| 66 | /// Sigmoid: tanh(gamma*u'*v + coef0)
|
---|
| 67 | /// </summary>
|
---|
| 68 | SIGMOID,
|
---|
| 69 | /// <summary>
|
---|
| 70 | /// Precomputed kernel
|
---|
| 71 | /// </summary>
|
---|
| 72 | PRECOMPUTED,
|
---|
| 73 | };
|
---|
[2645] | 74 |
|
---|
[4068] | 75 | /// <summary>
|
---|
| 76 | /// This class contains the various parameters which can affect the way in which an SVM
|
---|
| 77 | /// is learned. Unless you know what you are doing, chances are you are best off using
|
---|
| 78 | /// the default values.
|
---|
| 79 | /// </summary>
|
---|
| 80 | [Serializable]
|
---|
| 81 | public class Parameter : ICloneable {
|
---|
| 82 | private SvmType _svmType;
|
---|
| 83 | private KernelType _kernelType;
|
---|
| 84 | private int _degree;
|
---|
| 85 | private double _gamma;
|
---|
| 86 | private double _coef0;
|
---|
[2645] | 87 |
|
---|
[4068] | 88 | private double _cacheSize;
|
---|
| 89 | private double _C;
|
---|
| 90 | private double _eps;
|
---|
[2645] | 91 |
|
---|
[4068] | 92 | private Dictionary<int, double> _weights;
|
---|
| 93 | private double _nu;
|
---|
| 94 | private double _p;
|
---|
| 95 | private bool _shrinking;
|
---|
| 96 | private bool _probability;
|
---|
[2645] | 97 |
|
---|
[4068] | 98 | /// <summary>
|
---|
| 99 | /// Default Constructor. Gives good default values to all parameters.
|
---|
| 100 | /// </summary>
|
---|
| 101 | public Parameter() {
|
---|
| 102 | _svmType = SvmType.C_SVC;
|
---|
| 103 | _kernelType = KernelType.RBF;
|
---|
| 104 | _degree = 3;
|
---|
| 105 | _gamma = 0; // 1/k
|
---|
| 106 | _coef0 = 0;
|
---|
| 107 | _nu = 0.5;
|
---|
| 108 | _cacheSize = 40;
|
---|
| 109 | _C = 1;
|
---|
| 110 | _eps = 1e-3;
|
---|
| 111 | _p = 0.1;
|
---|
| 112 | _shrinking = true;
|
---|
| 113 | _probability = false;
|
---|
| 114 | _weights = new Dictionary<int, double>();
|
---|
| 115 | }
|
---|
[2645] | 116 |
|
---|
[4068] | 117 | /// <summary>
|
---|
| 118 | /// Type of SVM (default C-SVC)
|
---|
| 119 | /// </summary>
|
---|
| 120 | public SvmType SvmType {
|
---|
| 121 | get {
|
---|
| 122 | return _svmType;
|
---|
| 123 | }
|
---|
| 124 | set {
|
---|
| 125 | _svmType = value;
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 | /// <summary>
|
---|
| 129 | /// Type of kernel function (default Polynomial)
|
---|
| 130 | /// </summary>
|
---|
| 131 | public KernelType KernelType {
|
---|
| 132 | get {
|
---|
| 133 | return _kernelType;
|
---|
| 134 | }
|
---|
| 135 | set {
|
---|
| 136 | _kernelType = value;
|
---|
| 137 | }
|
---|
| 138 | }
|
---|
| 139 | /// <summary>
|
---|
| 140 | /// Degree in kernel function (default 3).
|
---|
| 141 | /// </summary>
|
---|
| 142 | public int Degree {
|
---|
| 143 | get {
|
---|
| 144 | return _degree;
|
---|
| 145 | }
|
---|
| 146 | set {
|
---|
| 147 | _degree = value;
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 | /// <summary>
|
---|
| 151 | /// Gamma in kernel function (default 1/k)
|
---|
| 152 | /// </summary>
|
---|
| 153 | public double Gamma {
|
---|
| 154 | get {
|
---|
| 155 | return _gamma;
|
---|
| 156 | }
|
---|
| 157 | set {
|
---|
| 158 | _gamma = value;
|
---|
| 159 | }
|
---|
| 160 | }
|
---|
| 161 | /// <summary>
|
---|
| 162 | /// Zeroeth coefficient in kernel function (default 0)
|
---|
| 163 | /// </summary>
|
---|
| 164 | public double Coefficient0 {
|
---|
| 165 | get {
|
---|
| 166 | return _coef0;
|
---|
| 167 | }
|
---|
| 168 | set {
|
---|
| 169 | _coef0 = value;
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
[2645] | 172 |
|
---|
[4068] | 173 | /// <summary>
|
---|
| 174 | /// Cache memory size in MB (default 100)
|
---|
| 175 | /// </summary>
|
---|
| 176 | public double CacheSize {
|
---|
| 177 | get {
|
---|
| 178 | return _cacheSize;
|
---|
| 179 | }
|
---|
| 180 | set {
|
---|
| 181 | _cacheSize = value;
|
---|
| 182 | }
|
---|
| 183 | }
|
---|
| 184 | /// <summary>
|
---|
| 185 | /// Tolerance of termination criterion (default 0.001)
|
---|
| 186 | /// </summary>
|
---|
| 187 | public double EPS {
|
---|
| 188 | get {
|
---|
| 189 | return _eps;
|
---|
| 190 | }
|
---|
| 191 | set {
|
---|
| 192 | _eps = value;
|
---|
| 193 | }
|
---|
| 194 | }
|
---|
| 195 | /// <summary>
|
---|
| 196 | /// The parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
|
---|
| 197 | /// </summary>
|
---|
| 198 | public double C {
|
---|
| 199 | get {
|
---|
| 200 | return _C;
|
---|
| 201 | }
|
---|
| 202 | set {
|
---|
| 203 | _C = value;
|
---|
| 204 | }
|
---|
| 205 | }
|
---|
[2645] | 206 |
|
---|
[4068] | 207 | /// <summary>
|
---|
| 208 | /// Contains custom weights for class labels. Default weight value is 1.
|
---|
| 209 | /// </summary>
|
---|
| 210 | public Dictionary<int, double> Weights {
|
---|
| 211 | get {
|
---|
| 212 | return _weights;
|
---|
| 213 | }
|
---|
| 214 | }
|
---|
[2645] | 215 |
|
---|
[4068] | 216 | /// <summary>
|
---|
| 217 | /// The parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
|
---|
| 218 | /// </summary>
|
---|
| 219 | public double Nu {
|
---|
| 220 | get {
|
---|
| 221 | return _nu;
|
---|
| 222 | }
|
---|
| 223 | set {
|
---|
| 224 | _nu = value;
|
---|
| 225 | }
|
---|
| 226 | }
|
---|
| 227 | /// <summary>
|
---|
| 228 | /// The epsilon in loss function of epsilon-SVR (default 0.1)
|
---|
| 229 | /// </summary>
|
---|
| 230 | public double P {
|
---|
| 231 | get {
|
---|
| 232 | return _p;
|
---|
| 233 | }
|
---|
| 234 | set {
|
---|
| 235 | _p = value;
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 | /// <summary>
|
---|
| 239 | /// Whether to use the shrinking heuristics, (default True)
|
---|
| 240 | /// </summary>
|
---|
| 241 | public bool Shrinking {
|
---|
| 242 | get {
|
---|
| 243 | return _shrinking;
|
---|
| 244 | }
|
---|
| 245 | set {
|
---|
| 246 | _shrinking = value;
|
---|
| 247 | }
|
---|
| 248 | }
|
---|
| 249 | /// <summary>
|
---|
| 250 | /// Whether to train an SVC or SVR model for probability estimates, (default False)
|
---|
| 251 | /// </summary>
|
---|
| 252 | public bool Probability {
|
---|
| 253 | get {
|
---|
| 254 | return _probability;
|
---|
| 255 | }
|
---|
| 256 | set {
|
---|
| 257 | _probability = value;
|
---|
| 258 | }
|
---|
| 259 | }
|
---|
[2645] | 260 |
|
---|
[4068] | 261 |
|
---|
| 262 | #region ICloneable Members
|
---|
| 263 | /// <summary>
|
---|
| 264 | /// Creates a memberwise clone of this parameters object.
|
---|
| 265 | /// </summary>
|
---|
| 266 | /// <returns>The clone (as type Parameter)</returns>
|
---|
| 267 | public object Clone() {
|
---|
| 268 | return base.MemberwiseClone();
|
---|
[2645] | 269 | }
|
---|
[4068] | 270 |
|
---|
| 271 | #endregion
|
---|
| 272 | }
|
---|
[2645] | 273 | } |
---|