1 | /*
|
---|
2 | * SVM.NET Library
|
---|
3 | * Copyright (C) 2008 Matthew Johnson
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 |
|
---|
20 |
|
---|
21 | using System;
|
---|
22 | using System.IO;
|
---|
23 |
|
---|
24 | namespace SVM {
|
---|
25 | /// <summary>
|
---|
26 | /// Encapsulates an SVM Model.
|
---|
27 | /// </summary>
|
---|
28 | [Serializable]
|
---|
29 | public class Model {
|
---|
30 | private Parameter _parameter;
|
---|
31 | private int _numberOfClasses;
|
---|
32 | private int _supportVectorCount;
|
---|
33 | private int[] _supportVectorIndizes;
|
---|
34 | private Node[][] _supportVectors;
|
---|
35 | private double[][] _supportVectorCoefficients;
|
---|
36 | private double[] _rho;
|
---|
37 | private double[] _pairwiseProbabilityA;
|
---|
38 | private double[] _pairwiseProbabilityB;
|
---|
39 |
|
---|
40 | private int[] _classLabels;
|
---|
41 | private int[] _numberOfSVPerClass;
|
---|
42 |
|
---|
43 | internal Model() {
|
---|
44 | }
|
---|
45 |
|
---|
46 | /// <summary>
|
---|
47 | /// Parameter object.
|
---|
48 | /// </summary>
|
---|
49 | public Parameter Parameter {
|
---|
50 | get {
|
---|
51 | return _parameter;
|
---|
52 | }
|
---|
53 | set {
|
---|
54 | _parameter = value;
|
---|
55 | }
|
---|
56 | }
|
---|
57 |
|
---|
58 | /// <summary>
|
---|
59 | /// Number of classes in the model.
|
---|
60 | /// </summary>
|
---|
61 | public int NumberOfClasses {
|
---|
62 | get {
|
---|
63 | return _numberOfClasses;
|
---|
64 | }
|
---|
65 | set {
|
---|
66 | _numberOfClasses = value;
|
---|
67 | }
|
---|
68 | }
|
---|
69 |
|
---|
70 | /// <summary>
|
---|
71 | /// Total number of support vectors.
|
---|
72 | /// </summary>
|
---|
73 | public int SupportVectorCount {
|
---|
74 | get {
|
---|
75 | return _supportVectorCount;
|
---|
76 | }
|
---|
77 | set {
|
---|
78 | _supportVectorCount = value;
|
---|
79 | }
|
---|
80 | }
|
---|
81 |
|
---|
82 | /// <summary>
|
---|
83 | /// Indizes of support vectors identified in the training.
|
---|
84 | /// </summary>
|
---|
85 | public int[] SupportVectorIndizes {
|
---|
86 | get {
|
---|
87 | return _supportVectorIndizes;
|
---|
88 | }
|
---|
89 | set {
|
---|
90 | _supportVectorIndizes = value;
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | /// <summary>
|
---|
95 | /// The support vectors.
|
---|
96 | /// </summary>
|
---|
97 | public Node[][] SupportVectors {
|
---|
98 | get {
|
---|
99 | return _supportVectors;
|
---|
100 | }
|
---|
101 | set {
|
---|
102 | _supportVectors = value;
|
---|
103 | }
|
---|
104 | }
|
---|
105 |
|
---|
106 | /// <summary>
|
---|
107 | /// The coefficients for the support vectors.
|
---|
108 | /// </summary>
|
---|
109 | public double[][] SupportVectorCoefficients {
|
---|
110 | get {
|
---|
111 | return _supportVectorCoefficients;
|
---|
112 | }
|
---|
113 | set {
|
---|
114 | _supportVectorCoefficients = value;
|
---|
115 | }
|
---|
116 | }
|
---|
117 |
|
---|
118 | /// <summary>
|
---|
119 | /// Rho values.
|
---|
120 | /// </summary>
|
---|
121 | public double[] Rho {
|
---|
122 | get {
|
---|
123 | return _rho;
|
---|
124 | }
|
---|
125 | set {
|
---|
126 | _rho = value;
|
---|
127 | }
|
---|
128 | }
|
---|
129 |
|
---|
130 | /// <summary>
|
---|
131 | /// First pairwise probability.
|
---|
132 | /// </summary>
|
---|
133 | public double[] PairwiseProbabilityA {
|
---|
134 | get {
|
---|
135 | return _pairwiseProbabilityA;
|
---|
136 | }
|
---|
137 | set {
|
---|
138 | _pairwiseProbabilityA = value;
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | /// <summary>
|
---|
143 | /// Second pairwise probability.
|
---|
144 | /// </summary>
|
---|
145 | public double[] PairwiseProbabilityB {
|
---|
146 | get {
|
---|
147 | return _pairwiseProbabilityB;
|
---|
148 | }
|
---|
149 | set {
|
---|
150 | _pairwiseProbabilityB = value;
|
---|
151 | }
|
---|
152 | }
|
---|
153 |
|
---|
154 | // for classification only
|
---|
155 |
|
---|
156 | /// <summary>
|
---|
157 | /// Class labels.
|
---|
158 | /// </summary>
|
---|
159 | public int[] ClassLabels {
|
---|
160 | get {
|
---|
161 | return _classLabels;
|
---|
162 | }
|
---|
163 | set {
|
---|
164 | _classLabels = value;
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 | /// <summary>
|
---|
169 | /// Number of support vectors per class.
|
---|
170 | /// </summary>
|
---|
171 | public int[] NumberOfSVPerClass {
|
---|
172 | get {
|
---|
173 | return _numberOfSVPerClass;
|
---|
174 | }
|
---|
175 | set {
|
---|
176 | _numberOfSVPerClass = value;
|
---|
177 | }
|
---|
178 | }
|
---|
179 |
|
---|
180 | /// <summary>
|
---|
181 | /// Reads a Model from the provided file.
|
---|
182 | /// </summary>
|
---|
183 | /// <param name="filename">The name of the file containing the Model</param>
|
---|
184 | /// <returns>the Model</returns>
|
---|
185 | public static Model Read(string filename) {
|
---|
186 | FileStream input = File.OpenRead(filename);
|
---|
187 | try {
|
---|
188 | return Read(input);
|
---|
189 | }
|
---|
190 | finally {
|
---|
191 | input.Close();
|
---|
192 | }
|
---|
193 | }
|
---|
194 |
|
---|
195 | public static Model Read(Stream stream) {
|
---|
196 | return Read(new StreamReader(stream));
|
---|
197 | }
|
---|
198 |
|
---|
199 | /// <summary>
|
---|
200 | /// Reads a Model from the provided stream.
|
---|
201 | /// </summary>
|
---|
202 | /// <param name="stream">The stream from which to read the Model.</param>
|
---|
203 | /// <returns>the Model</returns>
|
---|
204 | public static Model Read(TextReader input) {
|
---|
205 | TemporaryCulture.Start();
|
---|
206 |
|
---|
207 | // read parameters
|
---|
208 |
|
---|
209 | Model model = new Model();
|
---|
210 | Parameter param = new Parameter();
|
---|
211 | model.Parameter = param;
|
---|
212 | model.Rho = null;
|
---|
213 | model.PairwiseProbabilityA = null;
|
---|
214 | model.PairwiseProbabilityB = null;
|
---|
215 | model.ClassLabels = null;
|
---|
216 | model.NumberOfSVPerClass = null;
|
---|
217 | model.SupportVectorIndizes = new int[0];
|
---|
218 |
|
---|
219 | bool headerFinished = false;
|
---|
220 | while (!headerFinished) {
|
---|
221 | string line = input.ReadLine();
|
---|
222 | string cmd, arg;
|
---|
223 | int splitIndex = line.IndexOf(' ');
|
---|
224 | if (splitIndex >= 0) {
|
---|
225 | cmd = line.Substring(0, splitIndex);
|
---|
226 | arg = line.Substring(splitIndex + 1);
|
---|
227 | } else {
|
---|
228 | cmd = line;
|
---|
229 | arg = "";
|
---|
230 | }
|
---|
231 | // arg = arg.ToLower(); (transforms double NaN or Infinity values to incorrect format [gkronber])
|
---|
232 |
|
---|
233 | int i, n;
|
---|
234 | switch (cmd) {
|
---|
235 | case "svm_type":
|
---|
236 | param.SvmType = (SvmType)Enum.Parse(typeof(SvmType), arg.ToUpper());
|
---|
237 | break;
|
---|
238 |
|
---|
239 | case "kernel_type":
|
---|
240 | param.KernelType = (KernelType)Enum.Parse(typeof(KernelType), arg.ToUpper());
|
---|
241 | break;
|
---|
242 |
|
---|
243 | case "degree":
|
---|
244 | param.Degree = int.Parse(arg);
|
---|
245 | break;
|
---|
246 |
|
---|
247 | case "gamma":
|
---|
248 | param.Gamma = double.Parse(arg);
|
---|
249 | break;
|
---|
250 |
|
---|
251 | case "coef0":
|
---|
252 | param.Coefficient0 = double.Parse(arg);
|
---|
253 | break;
|
---|
254 |
|
---|
255 | case "nr_class":
|
---|
256 | model.NumberOfClasses = int.Parse(arg);
|
---|
257 | break;
|
---|
258 |
|
---|
259 | case "total_sv":
|
---|
260 | model.SupportVectorCount = int.Parse(arg);
|
---|
261 | break;
|
---|
262 |
|
---|
263 | case "rho":
|
---|
264 | n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
|
---|
265 | model.Rho = new double[n];
|
---|
266 | string[] rhoParts = arg.Split();
|
---|
267 | for (i = 0; i < n; i++)
|
---|
268 | model.Rho[i] = double.Parse(rhoParts[i]);
|
---|
269 | break;
|
---|
270 |
|
---|
271 | case "label":
|
---|
272 | n = model.NumberOfClasses;
|
---|
273 | model.ClassLabels = new int[n];
|
---|
274 | string[] labelParts = arg.Split();
|
---|
275 | for (i = 0; i < n; i++)
|
---|
276 | model.ClassLabels[i] = int.Parse(labelParts[i]);
|
---|
277 | break;
|
---|
278 |
|
---|
279 | case "probA":
|
---|
280 | n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
|
---|
281 | model.PairwiseProbabilityA = new double[n];
|
---|
282 | string[] probAParts = arg.Split();
|
---|
283 | for (i = 0; i < n; i++)
|
---|
284 | model.PairwiseProbabilityA[i] = double.Parse(probAParts[i]);
|
---|
285 | break;
|
---|
286 |
|
---|
287 | case "probB":
|
---|
288 | n = model.NumberOfClasses * (model.NumberOfClasses - 1) / 2;
|
---|
289 | model.PairwiseProbabilityB = new double[n];
|
---|
290 | string[] probBParts = arg.Split();
|
---|
291 | for (i = 0; i < n; i++)
|
---|
292 | model.PairwiseProbabilityB[i] = double.Parse(probBParts[i]);
|
---|
293 | break;
|
---|
294 |
|
---|
295 | case "nr_sv":
|
---|
296 | n = model.NumberOfClasses;
|
---|
297 | model.NumberOfSVPerClass = new int[n];
|
---|
298 | string[] nrsvParts = arg.Split();
|
---|
299 | for (i = 0; i < n; i++)
|
---|
300 | model.NumberOfSVPerClass[i] = int.Parse(nrsvParts[i]);
|
---|
301 | break;
|
---|
302 |
|
---|
303 | case "SV":
|
---|
304 | headerFinished = true;
|
---|
305 | break;
|
---|
306 |
|
---|
307 | default:
|
---|
308 | throw new Exception("Unknown text in model file");
|
---|
309 | }
|
---|
310 | }
|
---|
311 |
|
---|
312 | // read sv_coef and SV
|
---|
313 |
|
---|
314 | int m = model.NumberOfClasses - 1;
|
---|
315 | int l = model.SupportVectorCount;
|
---|
316 | model.SupportVectorCoefficients = new double[m][];
|
---|
317 | for (int i = 0; i < m; i++) {
|
---|
318 | model.SupportVectorCoefficients[i] = new double[l];
|
---|
319 | }
|
---|
320 | model.SupportVectors = new Node[l][];
|
---|
321 |
|
---|
322 | for (int i = 0; i < l; i++) {
|
---|
323 | string[] parts = input.ReadLine().Trim().Split();
|
---|
324 |
|
---|
325 | for (int k = 0; k < m; k++)
|
---|
326 | model.SupportVectorCoefficients[k][i] = double.Parse(parts[k]);
|
---|
327 | int n = parts.Length - m;
|
---|
328 | model.SupportVectors[i] = new Node[n];
|
---|
329 | for (int j = 0; j < n; j++) {
|
---|
330 | string[] nodeParts = parts[m + j].Split(':');
|
---|
331 | model.SupportVectors[i][j] = new Node();
|
---|
332 | model.SupportVectors[i][j].Index = int.Parse(nodeParts[0]);
|
---|
333 | model.SupportVectors[i][j].Value = double.Parse(nodeParts[1]);
|
---|
334 | }
|
---|
335 | }
|
---|
336 |
|
---|
337 | TemporaryCulture.Stop();
|
---|
338 |
|
---|
339 | return model;
|
---|
340 | }
|
---|
341 |
|
---|
342 | /// <summary>
|
---|
343 | /// Writes a model to the provided filename. This will overwrite any previous data in the file.
|
---|
344 | /// </summary>
|
---|
345 | /// <param name="filename">The desired file</param>
|
---|
346 | /// <param name="model">The Model to write</param>
|
---|
347 | public static void Write(string filename, Model model) {
|
---|
348 | FileStream stream = File.Open(filename, FileMode.Create);
|
---|
349 | try {
|
---|
350 | Write(stream, model);
|
---|
351 | }
|
---|
352 | finally {
|
---|
353 | stream.Close();
|
---|
354 | }
|
---|
355 | }
|
---|
356 |
|
---|
357 | /// <summary>
|
---|
358 | /// Writes a model to the provided stream.
|
---|
359 | /// </summary>
|
---|
360 | /// <param name="stream">The output stream</param>
|
---|
361 | /// <param name="model">The model to write</param>
|
---|
362 | public static void Write(Stream stream, Model model) {
|
---|
363 | TemporaryCulture.Start();
|
---|
364 |
|
---|
365 | StreamWriter output = new StreamWriter(stream);
|
---|
366 |
|
---|
367 | Parameter param = model.Parameter;
|
---|
368 |
|
---|
369 | output.Write("svm_type " + param.SvmType + Environment.NewLine);
|
---|
370 | output.Write("kernel_type " + param.KernelType + Environment.NewLine);
|
---|
371 |
|
---|
372 | if (param.KernelType == KernelType.POLY)
|
---|
373 | output.Write("degree " + param.Degree.ToString("r") + Environment.NewLine);
|
---|
374 |
|
---|
375 | if (param.KernelType == KernelType.POLY || param.KernelType == KernelType.RBF || param.KernelType == KernelType.SIGMOID)
|
---|
376 | output.Write("gamma " + param.Gamma.ToString("r") + Environment.NewLine);
|
---|
377 |
|
---|
378 | if (param.KernelType == KernelType.POLY || param.KernelType == KernelType.SIGMOID)
|
---|
379 | output.Write("coef0 " + param.Coefficient0.ToString("r") + Environment.NewLine);
|
---|
380 |
|
---|
381 | int nr_class = model.NumberOfClasses;
|
---|
382 | int l = model.SupportVectorCount;
|
---|
383 | output.Write("nr_class " + nr_class + Environment.NewLine);
|
---|
384 | output.Write("total_sv " + l + Environment.NewLine);
|
---|
385 |
|
---|
386 | {
|
---|
387 | output.Write("rho");
|
---|
388 | for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
---|
389 | output.Write(" " + model.Rho[i].ToString("r"));
|
---|
390 | output.Write(Environment.NewLine);
|
---|
391 | }
|
---|
392 |
|
---|
393 | if (model.ClassLabels != null) {
|
---|
394 | output.Write("label");
|
---|
395 | for (int i = 0; i < nr_class; i++)
|
---|
396 | output.Write(" " + model.ClassLabels[i]);
|
---|
397 | output.Write(Environment.NewLine);
|
---|
398 | }
|
---|
399 |
|
---|
400 | if (model.PairwiseProbabilityA != null)
|
---|
401 | // regression has probA only
|
---|
402 | {
|
---|
403 | output.Write("probA");
|
---|
404 | for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
---|
405 | output.Write(" " + model.PairwiseProbabilityA[i].ToString("r"));
|
---|
406 | output.Write(Environment.NewLine);
|
---|
407 | }
|
---|
408 | if (model.PairwiseProbabilityB != null) {
|
---|
409 | output.Write("probB");
|
---|
410 | for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
---|
411 | output.Write(" " + model.PairwiseProbabilityB[i].ToString("r"));
|
---|
412 | output.Write(Environment.NewLine);
|
---|
413 | }
|
---|
414 |
|
---|
415 | if (model.NumberOfSVPerClass != null) {
|
---|
416 | output.Write("nr_sv");
|
---|
417 | for (int i = 0; i < nr_class; i++)
|
---|
418 | output.Write(" " + model.NumberOfSVPerClass[i].ToString("r"));
|
---|
419 | output.Write(Environment.NewLine);
|
---|
420 | }
|
---|
421 |
|
---|
422 | output.WriteLine("SV");
|
---|
423 | double[][] sv_coef = model.SupportVectorCoefficients;
|
---|
424 | Node[][] SV = model.SupportVectors;
|
---|
425 |
|
---|
426 | for (int i = 0; i < l; i++) {
|
---|
427 | for (int j = 0; j < nr_class - 1; j++)
|
---|
428 | output.Write(sv_coef[j][i].ToString("r") + " ");
|
---|
429 |
|
---|
430 | Node[] p = SV[i];
|
---|
431 | if (p.Length == 0) {
|
---|
432 | output.WriteLine();
|
---|
433 | continue;
|
---|
434 | }
|
---|
435 | if (param.KernelType == KernelType.PRECOMPUTED)
|
---|
436 | output.Write("0:{0}", (int)p[0].Value);
|
---|
437 | else {
|
---|
438 | output.Write("{0}:{1}", p[0].Index, p[0].Value.ToString("r"));
|
---|
439 | for (int j = 1; j < p.Length; j++)
|
---|
440 | output.Write(" {0}:{1}", p[j].Index, p[j].Value.ToString("r"));
|
---|
441 | }
|
---|
442 | output.WriteLine();
|
---|
443 | }
|
---|
444 |
|
---|
445 | output.Flush();
|
---|
446 |
|
---|
447 | TemporaryCulture.Stop();
|
---|
448 | }
|
---|
449 | }
|
---|
450 | } |
---|