1 | using System;
|
---|
2 |
|
---|
3 | namespace SVM {
|
---|
4 | internal interface IQMatrix {
|
---|
5 | float[] GetQ(int column, int len);
|
---|
6 | float[] GetQD();
|
---|
7 | void SwapIndex(int i, int j);
|
---|
8 | }
|
---|
9 |
|
---|
10 | internal abstract class Kernel : IQMatrix {
|
---|
11 | private Node[][] _x;
|
---|
12 | private double[] _xSquare;
|
---|
13 |
|
---|
14 | private KernelType _kernelType;
|
---|
15 | private int _degree;
|
---|
16 | private double _gamma;
|
---|
17 | private double _coef0;
|
---|
18 |
|
---|
19 | public abstract float[] GetQ(int column, int len);
|
---|
20 | public abstract float[] GetQD();
|
---|
21 |
|
---|
22 | public virtual void SwapIndex(int i, int j) {
|
---|
23 | _x.SwapIndex(i, j);
|
---|
24 |
|
---|
25 | if (_xSquare != null) {
|
---|
26 | _xSquare.SwapIndex(i, j);
|
---|
27 | }
|
---|
28 | }
|
---|
29 |
|
---|
30 | private static double powi(double value, int times) {
|
---|
31 | double tmp = value, ret = 1.0;
|
---|
32 |
|
---|
33 | for (int t = times; t > 0; t /= 2) {
|
---|
34 | if (t % 2 == 1) ret *= tmp;
|
---|
35 | tmp = tmp * tmp;
|
---|
36 | }
|
---|
37 | return ret;
|
---|
38 | }
|
---|
39 |
|
---|
40 | public double KernelFunction(int i, int j) {
|
---|
41 | switch (_kernelType) {
|
---|
42 | case KernelType.LINEAR:
|
---|
43 | return dot(_x[i], _x[j]);
|
---|
44 | case KernelType.POLY:
|
---|
45 | return powi(_gamma * dot(_x[i], _x[j]) + _coef0, _degree);
|
---|
46 | case KernelType.RBF:
|
---|
47 | return Math.Exp(-_gamma * (_xSquare[i] + _xSquare[j] - 2 * dot(_x[i], _x[j])));
|
---|
48 | case KernelType.SIGMOID:
|
---|
49 | return Math.Tanh(_gamma * dot(_x[i], _x[j]) + _coef0);
|
---|
50 | case KernelType.PRECOMPUTED:
|
---|
51 | return _x[i][(int)(_x[j][0].Value)].Value;
|
---|
52 | default:
|
---|
53 | return 0;
|
---|
54 | }
|
---|
55 | }
|
---|
56 |
|
---|
57 | public Kernel(int l, Node[][] x_, Parameter param) {
|
---|
58 | _kernelType = param.KernelType;
|
---|
59 | _degree = param.Degree;
|
---|
60 | _gamma = param.Gamma;
|
---|
61 | _coef0 = param.Coefficient0;
|
---|
62 |
|
---|
63 | _x = (Node[][])x_.Clone();
|
---|
64 |
|
---|
65 | if (_kernelType == KernelType.RBF) {
|
---|
66 | _xSquare = new double[l];
|
---|
67 | for (int i = 0; i < l; i++)
|
---|
68 | _xSquare[i] = dot(_x[i], _x[i]);
|
---|
69 | } else _xSquare = null;
|
---|
70 | }
|
---|
71 |
|
---|
72 | private static double dot(Node[] xNodes, Node[] yNodes) {
|
---|
73 | double sum = 0;
|
---|
74 | int xlen = xNodes.Length;
|
---|
75 | int ylen = yNodes.Length;
|
---|
76 | int i = 0;
|
---|
77 | int j = 0;
|
---|
78 | Node x = xNodes[0];
|
---|
79 | Node y = yNodes[0];
|
---|
80 | while (true) {
|
---|
81 | if (x._index == y._index) {
|
---|
82 | sum += x._value * y._value;
|
---|
83 | i++;
|
---|
84 | j++;
|
---|
85 | if (i < xlen && j < ylen) {
|
---|
86 | x = xNodes[i];
|
---|
87 | y = yNodes[j];
|
---|
88 | } else if (i < xlen) {
|
---|
89 | x = xNodes[i];
|
---|
90 | break;
|
---|
91 | } else if (j < ylen) {
|
---|
92 | y = yNodes[j];
|
---|
93 | break;
|
---|
94 | } else break;
|
---|
95 | } else {
|
---|
96 | if (x._index > y._index) {
|
---|
97 | ++j;
|
---|
98 | if (j < ylen)
|
---|
99 | y = yNodes[j];
|
---|
100 | else break;
|
---|
101 | } else {
|
---|
102 | ++i;
|
---|
103 | if (i < xlen)
|
---|
104 | x = xNodes[i];
|
---|
105 | else break;
|
---|
106 | }
|
---|
107 | }
|
---|
108 | }
|
---|
109 | return sum;
|
---|
110 | }
|
---|
111 |
|
---|
112 | private static double computeSquaredDistance(Node[] xNodes, Node[] yNodes) {
|
---|
113 | Node x = xNodes[0];
|
---|
114 | Node y = yNodes[0];
|
---|
115 | int xLength = xNodes.Length;
|
---|
116 | int yLength = yNodes.Length;
|
---|
117 | int xIndex = 0;
|
---|
118 | int yIndex = 0;
|
---|
119 | double sum = 0;
|
---|
120 |
|
---|
121 | while (true) {
|
---|
122 | if (x._index == y._index) {
|
---|
123 | double d = x._value - y._value;
|
---|
124 | sum += d * d;
|
---|
125 | xIndex++;
|
---|
126 | yIndex++;
|
---|
127 | if (xIndex < xLength && yIndex < yLength) {
|
---|
128 | x = xNodes[xIndex];
|
---|
129 | y = yNodes[yIndex];
|
---|
130 | } else if (xIndex < xLength) {
|
---|
131 | x = xNodes[xIndex];
|
---|
132 | break;
|
---|
133 | } else if (yIndex < yLength) {
|
---|
134 | y = yNodes[yIndex];
|
---|
135 | break;
|
---|
136 | } else break;
|
---|
137 | } else if (x._index > y._index) {
|
---|
138 | sum += y._value * y._value;
|
---|
139 | if (++yIndex < yLength)
|
---|
140 | y = yNodes[yIndex];
|
---|
141 | else break;
|
---|
142 | } else {
|
---|
143 | sum += x._value * x._value;
|
---|
144 | if (++xIndex < xLength)
|
---|
145 | x = xNodes[xIndex];
|
---|
146 | else break;
|
---|
147 | }
|
---|
148 | }
|
---|
149 |
|
---|
150 | for (; xIndex < xLength; xIndex++) {
|
---|
151 | double d = xNodes[xIndex]._value;
|
---|
152 | sum += d * d;
|
---|
153 | }
|
---|
154 |
|
---|
155 | for (; yIndex < yLength; yIndex++) {
|
---|
156 | double d = yNodes[yIndex]._value;
|
---|
157 | sum += d * d;
|
---|
158 | }
|
---|
159 |
|
---|
160 | return sum;
|
---|
161 | }
|
---|
162 |
|
---|
163 | public static double KernelFunction(Node[] x, Node[] y, Parameter param) {
|
---|
164 | switch (param.KernelType) {
|
---|
165 | case KernelType.LINEAR:
|
---|
166 | return dot(x, y);
|
---|
167 | case KernelType.POLY:
|
---|
168 | return powi(param.Degree * dot(x, y) + param.Coefficient0, param.Degree);
|
---|
169 | case KernelType.RBF: {
|
---|
170 | double sum = computeSquaredDistance(x, y);
|
---|
171 | return Math.Exp(-param.Gamma * sum);
|
---|
172 | }
|
---|
173 | case KernelType.SIGMOID:
|
---|
174 | return Math.Tanh(param.Gamma * dot(x, y) + param.Coefficient0);
|
---|
175 | case KernelType.PRECOMPUTED:
|
---|
176 | return x[(int)(y[0].Value)].Value;
|
---|
177 | default:
|
---|
178 | return 0;
|
---|
179 | }
|
---|
180 | }
|
---|
181 | }
|
---|
182 | }
|
---|