Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.ExtLibs/HeuristicLab.LibSVM/1.6.3/LibSVM-1.6.3/GaussianTransform.cs @ 5649

Last change on this file since 5649 was 4068, checked in by swagner, 14 years ago

Sorted usings and removed unused usings in entire solution (#1094)

File size: 6.2 KB
Line 
1/*
2 * SVM.NET Library
3 * Copyright (C) 2008 Matthew Johnson
4 *
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17 */
18
19
20using System;
21using System.Globalization;
22using System.IO;
23
24namespace SVM {
25  /// <summary>
26  /// A transform which learns the mean and variance of a sample set and uses these to transform new data
27  /// so that it has zero mean and unit variance.
28  /// </summary>
29  public class GaussianTransform : IRangeTransform {
30    private double[] _means;
31    private double[] _stddevs;
32
33    /// <summary>
34    /// Determines the Gaussian transform for the provided problem.
35    /// </summary>
36    /// <param name="prob">The Problem to analyze</param>
37    /// <returns>The Gaussian transform for the problem</returns>
38    public static GaussianTransform Compute(Problem prob) {
39      int[] counts = new int[prob.MaxIndex];
40      double[] means = new double[prob.MaxIndex];
41      foreach (Node[] sample in prob.X) {
42        for (int i = 0; i < sample.Length; i++) {
43          means[sample[i].Index - 1] += sample[i].Value;
44          counts[sample[i].Index - 1]++;
45        }
46      }
47      for (int i = 0; i < prob.MaxIndex; i++) {
48        if (counts[i] == 0)
49          counts[i] = 2;
50        means[i] /= counts[i];
51      }
52
53      double[] stddevs = new double[prob.MaxIndex];
54      foreach (Node[] sample in prob.X) {
55        for (int i = 0; i < sample.Length; i++) {
56          double diff = sample[i].Value - means[sample[i].Index - 1];
57          stddevs[sample[i].Index - 1] += diff * diff;
58        }
59      }
60      for (int i = 0; i < prob.MaxIndex; i++) {
61        if (stddevs[i] == 0)
62          continue;
63        stddevs[i] /= (counts[i] - 1);
64        stddevs[i] = Math.Sqrt(stddevs[i]);
65      }
66
67      return new GaussianTransform(means, stddevs);
68    }
69
70    /// <summary>
71    /// Constructor.
72    /// </summary>
73    /// <param name="means">Means in each dimension</param>
74    /// <param name="stddevs">Standard deviation in each dimension</param>
75    public GaussianTransform(double[] means, double[] stddevs) {
76      _means = means;
77      _stddevs = stddevs;
78    }
79
80    /// <summary>
81    /// Saves the transform to the disk.  The samples are not stored, only the
82    /// statistics.
83    /// </summary>
84    /// <param name="stream">The destination stream</param>
85    /// <param name="transform">The transform</param>
86    public static void Write(Stream stream, GaussianTransform transform) {
87      TemporaryCulture.Start();
88
89      StreamWriter output = new StreamWriter(stream);
90      output.WriteLine(transform._means.Length);
91      for (int i = 0; i < transform._means.Length; i++)
92        output.WriteLine("{0} {1}", transform._means[i], transform._stddevs[i]);
93      output.Flush();
94
95      TemporaryCulture.Stop();
96    }
97
98    /// <summary>
99    /// Reads a GaussianTransform from the provided stream.
100    /// </summary>
101    /// <param name="stream">The source stream</param>
102    /// <returns>The transform</returns>
103    public static GaussianTransform Read(Stream stream) {
104      TemporaryCulture.Start();
105
106      StreamReader input = new StreamReader(stream);
107      int length = int.Parse(input.ReadLine(), CultureInfo.InvariantCulture);
108      double[] means = new double[length];
109      double[] stddevs = new double[length];
110      for (int i = 0; i < length; i++) {
111        string[] parts = input.ReadLine().Split();
112        means[i] = double.Parse(parts[0], CultureInfo.InvariantCulture);
113        stddevs[i] = double.Parse(parts[1], CultureInfo.InvariantCulture);
114      }
115
116      TemporaryCulture.Stop();
117
118      return new GaussianTransform(means, stddevs);
119    }
120
121    /// <summary>
122    /// Saves the transform to the disk.  The samples are not stored, only the
123    /// statistics.
124    /// </summary>
125    /// <param name="filename">The destination filename</param>
126    /// <param name="transform">The transform</param>
127    public static void Write(string filename, GaussianTransform transform) {
128      FileStream output = File.Open(filename, FileMode.Create);
129      try {
130        Write(output, transform);
131      }
132      finally {
133        output.Close();
134      }
135    }
136
137    /// <summary>
138    /// Reads a GaussianTransform from the provided stream.
139    /// </summary>
140    /// <param name="filename">The source filename</param>
141    /// <returns>The transform</returns>
142    public static GaussianTransform Read(string filename) {
143      FileStream input = File.Open(filename, FileMode.Open);
144      try {
145        return Read(input);
146      }
147      finally {
148        input.Close();
149      }
150    }
151
152    #region IRangeTransform Members
153
154    /// <summary>
155    /// Transform the input value using the transform stored for the provided index.
156    /// </summary>
157    /// <param name="input">Input value</param>
158    /// <param name="index">Index of the transform to use</param>
159    /// <returns>The transformed value</returns>
160    public double Transform(double input, int index) {
161      index--;
162      if (_stddevs[index] == 0)
163        return 0;
164      double diff = input - _means[index];
165      diff /= _stddevs[index];
166      return diff;
167    }
168    /// <summary>
169    /// Transforms the input array.
170    /// </summary>
171    /// <param name="input">The array to transform</param>
172    /// <returns>The transformed array</returns>
173    public Node[] Transform(Node[] input) {
174      Node[] output = new Node[input.Length];
175      for (int i = 0; i < output.Length; i++) {
176        int index = input[i].Index;
177        double value = input[i].Value;
178        output[i] = new Node(index, Transform(value, index));
179      }
180      return output;
181    }
182
183    #endregion
184  }
185}
Note: See TracBrowser for help on using the repository browser.