[7673] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 | >>> END OF LICENSE >>>
|
---|
| 18 | *************************************************************************/
|
---|
| 19 | #pragma warning disable 162
|
---|
| 20 | #pragma warning disable 219
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | public partial class alglib
|
---|
| 24 | {
|
---|
| 25 |
|
---|
| 26 |
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | Portable high quality random number generator state.
|
---|
| 29 | Initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 30 |
|
---|
| 31 | Fields:
|
---|
| 32 | S1, S2 - seed values
|
---|
| 33 | V - precomputed value
|
---|
| 34 | MagicV - 'magic' value used to determine whether State structure
|
---|
| 35 | was correctly initialized.
|
---|
| 36 | *************************************************************************/
|
---|
| 37 | public class hqrndstate
|
---|
| 38 | {
|
---|
| 39 | //
|
---|
| 40 | // Public declarations
|
---|
| 41 | //
|
---|
| 42 |
|
---|
| 43 | public hqrndstate()
|
---|
| 44 | {
|
---|
| 45 | _innerobj = new hqrnd.hqrndstate();
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | //
|
---|
| 49 | // Although some of declarations below are public, you should not use them
|
---|
| 50 | // They are intended for internal use only
|
---|
| 51 | //
|
---|
| 52 | private hqrnd.hqrndstate _innerobj;
|
---|
| 53 | public hqrnd.hqrndstate innerobj { get { return _innerobj; } }
|
---|
| 54 | public hqrndstate(hqrnd.hqrndstate obj)
|
---|
| 55 | {
|
---|
| 56 | _innerobj = obj;
|
---|
| 57 | }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | /*************************************************************************
|
---|
| 61 | HQRNDState initialization with random values which come from standard
|
---|
| 62 | RNG.
|
---|
| 63 |
|
---|
| 64 | -- ALGLIB --
|
---|
| 65 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 66 | *************************************************************************/
|
---|
| 67 | public static void hqrndrandomize(out hqrndstate state)
|
---|
| 68 | {
|
---|
| 69 | state = new hqrndstate();
|
---|
| 70 | hqrnd.hqrndrandomize(state.innerobj);
|
---|
| 71 | return;
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | /*************************************************************************
|
---|
| 75 | HQRNDState initialization with seed values
|
---|
| 76 |
|
---|
| 77 | -- ALGLIB --
|
---|
| 78 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 79 | *************************************************************************/
|
---|
| 80 | public static void hqrndseed(int s1, int s2, out hqrndstate state)
|
---|
| 81 | {
|
---|
| 82 | state = new hqrndstate();
|
---|
| 83 | hqrnd.hqrndseed(s1, s2, state.innerobj);
|
---|
| 84 | return;
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | /*************************************************************************
|
---|
| 88 | This function generates random real number in (0,1),
|
---|
| 89 | not including interval boundaries
|
---|
| 90 |
|
---|
| 91 | State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 92 |
|
---|
| 93 | -- ALGLIB --
|
---|
| 94 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 95 | *************************************************************************/
|
---|
| 96 | public static double hqrnduniformr(hqrndstate state)
|
---|
| 97 | {
|
---|
| 98 |
|
---|
| 99 | double result = hqrnd.hqrnduniformr(state.innerobj);
|
---|
| 100 | return result;
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | /*************************************************************************
|
---|
| 104 | This function generates random integer number in [0, N)
|
---|
| 105 |
|
---|
| 106 | 1. N must be less than HQRNDMax-1.
|
---|
| 107 | 2. State structure must be initialized with HQRNDRandomize() or HQRNDSeed()
|
---|
| 108 |
|
---|
| 109 | -- ALGLIB --
|
---|
| 110 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 111 | *************************************************************************/
|
---|
| 112 | public static int hqrnduniformi(hqrndstate state, int n)
|
---|
| 113 | {
|
---|
| 114 |
|
---|
| 115 | int result = hqrnd.hqrnduniformi(state.innerobj, n);
|
---|
| 116 | return result;
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | /*************************************************************************
|
---|
| 120 | Random number generator: normal numbers
|
---|
| 121 |
|
---|
| 122 | This function generates one random number from normal distribution.
|
---|
| 123 | Its performance is equal to that of HQRNDNormal2()
|
---|
| 124 |
|
---|
| 125 | State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 126 |
|
---|
| 127 | -- ALGLIB --
|
---|
| 128 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 129 | *************************************************************************/
|
---|
| 130 | public static double hqrndnormal(hqrndstate state)
|
---|
| 131 | {
|
---|
| 132 |
|
---|
| 133 | double result = hqrnd.hqrndnormal(state.innerobj);
|
---|
| 134 | return result;
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | /*************************************************************************
|
---|
| 138 | Random number generator: random X and Y such that X^2+Y^2=1
|
---|
| 139 |
|
---|
| 140 | State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 141 |
|
---|
| 142 | -- ALGLIB --
|
---|
| 143 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 144 | *************************************************************************/
|
---|
| 145 | public static void hqrndunit2(hqrndstate state, out double x, out double y)
|
---|
| 146 | {
|
---|
| 147 | x = 0;
|
---|
| 148 | y = 0;
|
---|
| 149 | hqrnd.hqrndunit2(state.innerobj, ref x, ref y);
|
---|
| 150 | return;
|
---|
| 151 | }
|
---|
| 152 |
|
---|
| 153 | /*************************************************************************
|
---|
| 154 | Random number generator: normal numbers
|
---|
| 155 |
|
---|
| 156 | This function generates two independent random numbers from normal
|
---|
| 157 | distribution. Its performance is equal to that of HQRNDNormal()
|
---|
| 158 |
|
---|
| 159 | State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 160 |
|
---|
| 161 | -- ALGLIB --
|
---|
| 162 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 163 | *************************************************************************/
|
---|
| 164 | public static void hqrndnormal2(hqrndstate state, out double x1, out double x2)
|
---|
| 165 | {
|
---|
| 166 | x1 = 0;
|
---|
| 167 | x2 = 0;
|
---|
| 168 | hqrnd.hqrndnormal2(state.innerobj, ref x1, ref x2);
|
---|
| 169 | return;
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | /*************************************************************************
|
---|
| 173 | Random number generator: exponential distribution
|
---|
| 174 |
|
---|
| 175 | State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 176 |
|
---|
| 177 | -- ALGLIB --
|
---|
| 178 | Copyright 11.08.2007 by Bochkanov Sergey
|
---|
| 179 | *************************************************************************/
|
---|
| 180 | public static double hqrndexponential(hqrndstate state, double lambdav)
|
---|
| 181 | {
|
---|
| 182 |
|
---|
| 183 | double result = hqrnd.hqrndexponential(state.innerobj, lambdav);
|
---|
| 184 | return result;
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 | /*************************************************************************
|
---|
| 188 | This function generates random number from discrete distribution given by
|
---|
| 189 | finite sample X.
|
---|
| 190 |
|
---|
| 191 | INPUT PARAMETERS
|
---|
| 192 | State - high quality random number generator, must be
|
---|
| 193 | initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 194 | X - finite sample
|
---|
| 195 | N - number of elements to use, N>=1
|
---|
| 196 |
|
---|
| 197 | RESULT
|
---|
| 198 | this function returns one of the X[i] for random i=0..N-1
|
---|
| 199 |
|
---|
| 200 | -- ALGLIB --
|
---|
| 201 | Copyright 08.11.2011 by Bochkanov Sergey
|
---|
| 202 | *************************************************************************/
|
---|
| 203 | public static double hqrnddiscrete(hqrndstate state, double[] x, int n)
|
---|
| 204 | {
|
---|
| 205 |
|
---|
| 206 | double result = hqrnd.hqrnddiscrete(state.innerobj, x, n);
|
---|
| 207 | return result;
|
---|
| 208 | }
|
---|
| 209 |
|
---|
| 210 | /*************************************************************************
|
---|
| 211 | This function generates random number from continuous distribution given
|
---|
| 212 | by finite sample X.
|
---|
| 213 |
|
---|
| 214 | INPUT PARAMETERS
|
---|
| 215 | State - high quality random number generator, must be
|
---|
| 216 | initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 217 | X - finite sample, array[N] (can be larger, in this case only
|
---|
| 218 | leading N elements are used). THIS ARRAY MUST BE SORTED BY
|
---|
| 219 | ASCENDING.
|
---|
| 220 | N - number of elements to use, N>=1
|
---|
| 221 |
|
---|
| 222 | RESULT
|
---|
| 223 | this function returns random number from continuous distribution which
|
---|
| 224 | tries to approximate X as mush as possible. min(X)<=Result<=max(X).
|
---|
| 225 |
|
---|
| 226 | -- ALGLIB --
|
---|
| 227 | Copyright 08.11.2011 by Bochkanov Sergey
|
---|
| 228 | *************************************************************************/
|
---|
| 229 | public static double hqrndcontinuous(hqrndstate state, double[] x, int n)
|
---|
| 230 | {
|
---|
| 231 |
|
---|
| 232 | double result = hqrnd.hqrndcontinuous(state.innerobj, x, n);
|
---|
| 233 | return result;
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 | }
|
---|
| 237 | public partial class alglib
|
---|
| 238 | {
|
---|
| 239 |
|
---|
| 240 |
|
---|
| 241 | /*************************************************************************
|
---|
| 242 |
|
---|
| 243 | *************************************************************************/
|
---|
| 244 | public class kdtree
|
---|
| 245 | {
|
---|
| 246 | //
|
---|
| 247 | // Public declarations
|
---|
| 248 | //
|
---|
| 249 |
|
---|
| 250 | public kdtree()
|
---|
| 251 | {
|
---|
| 252 | _innerobj = new nearestneighbor.kdtree();
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | //
|
---|
| 256 | // Although some of declarations below are public, you should not use them
|
---|
| 257 | // They are intended for internal use only
|
---|
| 258 | //
|
---|
| 259 | private nearestneighbor.kdtree _innerobj;
|
---|
| 260 | public nearestneighbor.kdtree innerobj { get { return _innerobj; } }
|
---|
| 261 | public kdtree(nearestneighbor.kdtree obj)
|
---|
| 262 | {
|
---|
| 263 | _innerobj = obj;
|
---|
| 264 | }
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 |
|
---|
| 268 | /*************************************************************************
|
---|
| 269 | This function serializes data structure to string.
|
---|
| 270 |
|
---|
| 271 | Important properties of s_out:
|
---|
| 272 | * it contains alphanumeric characters, dots, underscores, minus signs
|
---|
| 273 | * these symbols are grouped into words, which are separated by spaces
|
---|
| 274 | and Windows-style (CR+LF) newlines
|
---|
| 275 | * although serializer uses spaces and CR+LF as separators, you can
|
---|
| 276 | replace any separator character by arbitrary combination of spaces,
|
---|
| 277 | tabs, Windows or Unix newlines. It allows flexible reformatting of
|
---|
| 278 | the string in case you want to include it into text or XML file.
|
---|
| 279 | But you should not insert separators into the middle of the "words"
|
---|
| 280 | nor you should change case of letters.
|
---|
| 281 | * s_out can be freely moved between 32-bit and 64-bit systems, little
|
---|
| 282 | and big endian machines, and so on. You can serialize structure on
|
---|
| 283 | 32-bit machine and unserialize it on 64-bit one (or vice versa), or
|
---|
| 284 | serialize it on SPARC and unserialize on x86. You can also
|
---|
| 285 | serialize it in C# version of ALGLIB and unserialize in C++ one,
|
---|
| 286 | and vice versa.
|
---|
| 287 | *************************************************************************/
|
---|
| 288 | public static void kdtreeserialize(kdtree obj, out string s_out)
|
---|
| 289 | {
|
---|
| 290 | alglib.serializer s = new alglib.serializer();
|
---|
| 291 | s.alloc_start();
|
---|
| 292 | nearestneighbor.kdtreealloc(s, obj.innerobj);
|
---|
| 293 | s.sstart_str();
|
---|
| 294 | nearestneighbor.kdtreeserialize(s, obj.innerobj);
|
---|
| 295 | s.stop();
|
---|
| 296 | s_out = s.get_string();
|
---|
| 297 | }
|
---|
| 298 |
|
---|
| 299 |
|
---|
| 300 | /*************************************************************************
|
---|
| 301 | This function unserializes data structure from string.
|
---|
| 302 | *************************************************************************/
|
---|
| 303 | public static void kdtreeunserialize(string s_in, out kdtree obj)
|
---|
| 304 | {
|
---|
| 305 | alglib.serializer s = new alglib.serializer();
|
---|
| 306 | obj = new kdtree();
|
---|
| 307 | s.ustart_str(s_in);
|
---|
| 308 | nearestneighbor.kdtreeunserialize(s, obj.innerobj);
|
---|
| 309 | s.stop();
|
---|
| 310 | }
|
---|
| 311 |
|
---|
| 312 | /*************************************************************************
|
---|
| 313 | KD-tree creation
|
---|
| 314 |
|
---|
| 315 | This subroutine creates KD-tree from set of X-values and optional Y-values
|
---|
| 316 |
|
---|
| 317 | INPUT PARAMETERS
|
---|
| 318 | XY - dataset, array[0..N-1,0..NX+NY-1].
|
---|
| 319 | one row corresponds to one point.
|
---|
| 320 | first NX columns contain X-values, next NY (NY may be zero)
|
---|
| 321 | columns may contain associated Y-values
|
---|
| 322 | N - number of points, N>=0.
|
---|
| 323 | NX - space dimension, NX>=1.
|
---|
| 324 | NY - number of optional Y-values, NY>=0.
|
---|
| 325 | NormType- norm type:
|
---|
| 326 | * 0 denotes infinity-norm
|
---|
| 327 | * 1 denotes 1-norm
|
---|
| 328 | * 2 denotes 2-norm (Euclidean norm)
|
---|
| 329 |
|
---|
| 330 | OUTPUT PARAMETERS
|
---|
| 331 | KDT - KD-tree
|
---|
| 332 |
|
---|
| 333 |
|
---|
| 334 | NOTES
|
---|
| 335 |
|
---|
| 336 | 1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
---|
| 337 | requirements.
|
---|
| 338 | 2. Although KD-trees may be used with any combination of N and NX, they
|
---|
| 339 | are more efficient than brute-force search only when N >> 4^NX. So they
|
---|
| 340 | are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
---|
| 341 | inefficient case, because simple binary search (without additional
|
---|
| 342 | structures) is much more efficient in such tasks than KD-trees.
|
---|
| 343 |
|
---|
| 344 | -- ALGLIB --
|
---|
| 345 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 346 | *************************************************************************/
|
---|
| 347 | public static void kdtreebuild(double[,] xy, int n, int nx, int ny, int normtype, out kdtree kdt)
|
---|
| 348 | {
|
---|
| 349 | kdt = new kdtree();
|
---|
| 350 | nearestneighbor.kdtreebuild(xy, n, nx, ny, normtype, kdt.innerobj);
|
---|
| 351 | return;
|
---|
| 352 | }
|
---|
| 353 | public static void kdtreebuild(double[,] xy, int nx, int ny, int normtype, out kdtree kdt)
|
---|
| 354 | {
|
---|
| 355 | int n;
|
---|
| 356 |
|
---|
| 357 | kdt = new kdtree();
|
---|
| 358 | n = ap.rows(xy);
|
---|
| 359 | nearestneighbor.kdtreebuild(xy, n, nx, ny, normtype, kdt.innerobj);
|
---|
| 360 |
|
---|
| 361 | return;
|
---|
| 362 | }
|
---|
| 363 |
|
---|
| 364 | /*************************************************************************
|
---|
| 365 | KD-tree creation
|
---|
| 366 |
|
---|
| 367 | This subroutine creates KD-tree from set of X-values, integer tags and
|
---|
| 368 | optional Y-values
|
---|
| 369 |
|
---|
| 370 | INPUT PARAMETERS
|
---|
| 371 | XY - dataset, array[0..N-1,0..NX+NY-1].
|
---|
| 372 | one row corresponds to one point.
|
---|
| 373 | first NX columns contain X-values, next NY (NY may be zero)
|
---|
| 374 | columns may contain associated Y-values
|
---|
| 375 | Tags - tags, array[0..N-1], contains integer tags associated
|
---|
| 376 | with points.
|
---|
| 377 | N - number of points, N>=0
|
---|
| 378 | NX - space dimension, NX>=1.
|
---|
| 379 | NY - number of optional Y-values, NY>=0.
|
---|
| 380 | NormType- norm type:
|
---|
| 381 | * 0 denotes infinity-norm
|
---|
| 382 | * 1 denotes 1-norm
|
---|
| 383 | * 2 denotes 2-norm (Euclidean norm)
|
---|
| 384 |
|
---|
| 385 | OUTPUT PARAMETERS
|
---|
| 386 | KDT - KD-tree
|
---|
| 387 |
|
---|
| 388 | NOTES
|
---|
| 389 |
|
---|
| 390 | 1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
---|
| 391 | requirements.
|
---|
| 392 | 2. Although KD-trees may be used with any combination of N and NX, they
|
---|
| 393 | are more efficient than brute-force search only when N >> 4^NX. So they
|
---|
| 394 | are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
---|
| 395 | inefficient case, because simple binary search (without additional
|
---|
| 396 | structures) is much more efficient in such tasks than KD-trees.
|
---|
| 397 |
|
---|
| 398 | -- ALGLIB --
|
---|
| 399 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 400 | *************************************************************************/
|
---|
| 401 | public static void kdtreebuildtagged(double[,] xy, int[] tags, int n, int nx, int ny, int normtype, out kdtree kdt)
|
---|
| 402 | {
|
---|
| 403 | kdt = new kdtree();
|
---|
| 404 | nearestneighbor.kdtreebuildtagged(xy, tags, n, nx, ny, normtype, kdt.innerobj);
|
---|
| 405 | return;
|
---|
| 406 | }
|
---|
| 407 | public static void kdtreebuildtagged(double[,] xy, int[] tags, int nx, int ny, int normtype, out kdtree kdt)
|
---|
| 408 | {
|
---|
| 409 | int n;
|
---|
| 410 | if( (ap.rows(xy)!=ap.len(tags)))
|
---|
| 411 | throw new alglibexception("Error while calling 'kdtreebuildtagged': looks like one of arguments has wrong size");
|
---|
| 412 | kdt = new kdtree();
|
---|
| 413 | n = ap.rows(xy);
|
---|
| 414 | nearestneighbor.kdtreebuildtagged(xy, tags, n, nx, ny, normtype, kdt.innerobj);
|
---|
| 415 |
|
---|
| 416 | return;
|
---|
| 417 | }
|
---|
| 418 |
|
---|
| 419 | /*************************************************************************
|
---|
| 420 | K-NN query: K nearest neighbors
|
---|
| 421 |
|
---|
| 422 | INPUT PARAMETERS
|
---|
| 423 | KDT - KD-tree
|
---|
| 424 | X - point, array[0..NX-1].
|
---|
| 425 | K - number of neighbors to return, K>=1
|
---|
| 426 | SelfMatch - whether self-matches are allowed:
|
---|
| 427 | * if True, nearest neighbor may be the point itself
|
---|
| 428 | (if it exists in original dataset)
|
---|
| 429 | * if False, then only points with non-zero distance
|
---|
| 430 | are returned
|
---|
| 431 | * if not given, considered True
|
---|
| 432 |
|
---|
| 433 | RESULT
|
---|
| 434 | number of actual neighbors found (either K or N, if K>N).
|
---|
| 435 |
|
---|
| 436 | This subroutine performs query and stores its result in the internal
|
---|
| 437 | structures of the KD-tree. You can use following subroutines to obtain
|
---|
| 438 | these results:
|
---|
| 439 | * KDTreeQueryResultsX() to get X-values
|
---|
| 440 | * KDTreeQueryResultsXY() to get X- and Y-values
|
---|
| 441 | * KDTreeQueryResultsTags() to get tag values
|
---|
| 442 | * KDTreeQueryResultsDistances() to get distances
|
---|
| 443 |
|
---|
| 444 | -- ALGLIB --
|
---|
| 445 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 446 | *************************************************************************/
|
---|
| 447 | public static int kdtreequeryknn(kdtree kdt, double[] x, int k, bool selfmatch)
|
---|
| 448 | {
|
---|
| 449 |
|
---|
| 450 | int result = nearestneighbor.kdtreequeryknn(kdt.innerobj, x, k, selfmatch);
|
---|
| 451 | return result;
|
---|
| 452 | }
|
---|
| 453 | public static int kdtreequeryknn(kdtree kdt, double[] x, int k)
|
---|
| 454 | {
|
---|
| 455 | bool selfmatch;
|
---|
| 456 |
|
---|
| 457 |
|
---|
| 458 | selfmatch = true;
|
---|
| 459 | int result = nearestneighbor.kdtreequeryknn(kdt.innerobj, x, k, selfmatch);
|
---|
| 460 |
|
---|
| 461 | return result;
|
---|
| 462 | }
|
---|
| 463 |
|
---|
| 464 | /*************************************************************************
|
---|
| 465 | R-NN query: all points within R-sphere centered at X
|
---|
| 466 |
|
---|
| 467 | INPUT PARAMETERS
|
---|
| 468 | KDT - KD-tree
|
---|
| 469 | X - point, array[0..NX-1].
|
---|
| 470 | R - radius of sphere (in corresponding norm), R>0
|
---|
| 471 | SelfMatch - whether self-matches are allowed:
|
---|
| 472 | * if True, nearest neighbor may be the point itself
|
---|
| 473 | (if it exists in original dataset)
|
---|
| 474 | * if False, then only points with non-zero distance
|
---|
| 475 | are returned
|
---|
| 476 | * if not given, considered True
|
---|
| 477 |
|
---|
| 478 | RESULT
|
---|
| 479 | number of neighbors found, >=0
|
---|
| 480 |
|
---|
| 481 | This subroutine performs query and stores its result in the internal
|
---|
| 482 | structures of the KD-tree. You can use following subroutines to obtain
|
---|
| 483 | actual results:
|
---|
| 484 | * KDTreeQueryResultsX() to get X-values
|
---|
| 485 | * KDTreeQueryResultsXY() to get X- and Y-values
|
---|
| 486 | * KDTreeQueryResultsTags() to get tag values
|
---|
| 487 | * KDTreeQueryResultsDistances() to get distances
|
---|
| 488 |
|
---|
| 489 | -- ALGLIB --
|
---|
| 490 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 491 | *************************************************************************/
|
---|
| 492 | public static int kdtreequeryrnn(kdtree kdt, double[] x, double r, bool selfmatch)
|
---|
| 493 | {
|
---|
| 494 |
|
---|
| 495 | int result = nearestneighbor.kdtreequeryrnn(kdt.innerobj, x, r, selfmatch);
|
---|
| 496 | return result;
|
---|
| 497 | }
|
---|
| 498 | public static int kdtreequeryrnn(kdtree kdt, double[] x, double r)
|
---|
| 499 | {
|
---|
| 500 | bool selfmatch;
|
---|
| 501 |
|
---|
| 502 |
|
---|
| 503 | selfmatch = true;
|
---|
| 504 | int result = nearestneighbor.kdtreequeryrnn(kdt.innerobj, x, r, selfmatch);
|
---|
| 505 |
|
---|
| 506 | return result;
|
---|
| 507 | }
|
---|
| 508 |
|
---|
| 509 | /*************************************************************************
|
---|
| 510 | K-NN query: approximate K nearest neighbors
|
---|
| 511 |
|
---|
| 512 | INPUT PARAMETERS
|
---|
| 513 | KDT - KD-tree
|
---|
| 514 | X - point, array[0..NX-1].
|
---|
| 515 | K - number of neighbors to return, K>=1
|
---|
| 516 | SelfMatch - whether self-matches are allowed:
|
---|
| 517 | * if True, nearest neighbor may be the point itself
|
---|
| 518 | (if it exists in original dataset)
|
---|
| 519 | * if False, then only points with non-zero distance
|
---|
| 520 | are returned
|
---|
| 521 | * if not given, considered True
|
---|
| 522 | Eps - approximation factor, Eps>=0. eps-approximate nearest
|
---|
| 523 | neighbor is a neighbor whose distance from X is at
|
---|
| 524 | most (1+eps) times distance of true nearest neighbor.
|
---|
| 525 |
|
---|
| 526 | RESULT
|
---|
| 527 | number of actual neighbors found (either K or N, if K>N).
|
---|
| 528 |
|
---|
| 529 | NOTES
|
---|
| 530 | significant performance gain may be achieved only when Eps is is on
|
---|
| 531 | the order of magnitude of 1 or larger.
|
---|
| 532 |
|
---|
| 533 | This subroutine performs query and stores its result in the internal
|
---|
| 534 | structures of the KD-tree. You can use following subroutines to obtain
|
---|
| 535 | these results:
|
---|
| 536 | * KDTreeQueryResultsX() to get X-values
|
---|
| 537 | * KDTreeQueryResultsXY() to get X- and Y-values
|
---|
| 538 | * KDTreeQueryResultsTags() to get tag values
|
---|
| 539 | * KDTreeQueryResultsDistances() to get distances
|
---|
| 540 |
|
---|
| 541 | -- ALGLIB --
|
---|
| 542 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 543 | *************************************************************************/
|
---|
| 544 | public static int kdtreequeryaknn(kdtree kdt, double[] x, int k, bool selfmatch, double eps)
|
---|
| 545 | {
|
---|
| 546 |
|
---|
| 547 | int result = nearestneighbor.kdtreequeryaknn(kdt.innerobj, x, k, selfmatch, eps);
|
---|
| 548 | return result;
|
---|
| 549 | }
|
---|
| 550 | public static int kdtreequeryaknn(kdtree kdt, double[] x, int k, double eps)
|
---|
| 551 | {
|
---|
| 552 | bool selfmatch;
|
---|
| 553 |
|
---|
| 554 |
|
---|
| 555 | selfmatch = true;
|
---|
| 556 | int result = nearestneighbor.kdtreequeryaknn(kdt.innerobj, x, k, selfmatch, eps);
|
---|
| 557 |
|
---|
| 558 | return result;
|
---|
| 559 | }
|
---|
| 560 |
|
---|
| 561 | /*************************************************************************
|
---|
| 562 | X-values from last query
|
---|
| 563 |
|
---|
| 564 | INPUT PARAMETERS
|
---|
| 565 | KDT - KD-tree
|
---|
| 566 | X - possibly pre-allocated buffer. If X is too small to store
|
---|
| 567 | result, it is resized. If size(X) is enough to store
|
---|
| 568 | result, it is left unchanged.
|
---|
| 569 |
|
---|
| 570 | OUTPUT PARAMETERS
|
---|
| 571 | X - rows are filled with X-values
|
---|
| 572 |
|
---|
| 573 | NOTES
|
---|
| 574 | 1. points are ordered by distance from the query point (first = closest)
|
---|
| 575 | 2. if XY is larger than required to store result, only leading part will
|
---|
| 576 | be overwritten; trailing part will be left unchanged. So if on input
|
---|
| 577 | XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
---|
| 578 | XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
---|
| 579 | you want function to resize array according to result size, use
|
---|
| 580 | function with same name and suffix 'I'.
|
---|
| 581 |
|
---|
| 582 | SEE ALSO
|
---|
| 583 | * KDTreeQueryResultsXY() X- and Y-values
|
---|
| 584 | * KDTreeQueryResultsTags() tag values
|
---|
| 585 | * KDTreeQueryResultsDistances() distances
|
---|
| 586 |
|
---|
| 587 | -- ALGLIB --
|
---|
| 588 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 589 | *************************************************************************/
|
---|
| 590 | public static void kdtreequeryresultsx(kdtree kdt, ref double[,] x)
|
---|
| 591 | {
|
---|
| 592 |
|
---|
| 593 | nearestneighbor.kdtreequeryresultsx(kdt.innerobj, ref x);
|
---|
| 594 | return;
|
---|
| 595 | }
|
---|
| 596 |
|
---|
| 597 | /*************************************************************************
|
---|
| 598 | X- and Y-values from last query
|
---|
| 599 |
|
---|
| 600 | INPUT PARAMETERS
|
---|
| 601 | KDT - KD-tree
|
---|
| 602 | XY - possibly pre-allocated buffer. If XY is too small to store
|
---|
| 603 | result, it is resized. If size(XY) is enough to store
|
---|
| 604 | result, it is left unchanged.
|
---|
| 605 |
|
---|
| 606 | OUTPUT PARAMETERS
|
---|
| 607 | XY - rows are filled with points: first NX columns with
|
---|
| 608 | X-values, next NY columns - with Y-values.
|
---|
| 609 |
|
---|
| 610 | NOTES
|
---|
| 611 | 1. points are ordered by distance from the query point (first = closest)
|
---|
| 612 | 2. if XY is larger than required to store result, only leading part will
|
---|
| 613 | be overwritten; trailing part will be left unchanged. So if on input
|
---|
| 614 | XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
---|
| 615 | XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
---|
| 616 | you want function to resize array according to result size, use
|
---|
| 617 | function with same name and suffix 'I'.
|
---|
| 618 |
|
---|
| 619 | SEE ALSO
|
---|
| 620 | * KDTreeQueryResultsX() X-values
|
---|
| 621 | * KDTreeQueryResultsTags() tag values
|
---|
| 622 | * KDTreeQueryResultsDistances() distances
|
---|
| 623 |
|
---|
| 624 | -- ALGLIB --
|
---|
| 625 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 626 | *************************************************************************/
|
---|
| 627 | public static void kdtreequeryresultsxy(kdtree kdt, ref double[,] xy)
|
---|
| 628 | {
|
---|
| 629 |
|
---|
| 630 | nearestneighbor.kdtreequeryresultsxy(kdt.innerobj, ref xy);
|
---|
| 631 | return;
|
---|
| 632 | }
|
---|
| 633 |
|
---|
| 634 | /*************************************************************************
|
---|
| 635 | Tags from last query
|
---|
| 636 |
|
---|
| 637 | INPUT PARAMETERS
|
---|
| 638 | KDT - KD-tree
|
---|
| 639 | Tags - possibly pre-allocated buffer. If X is too small to store
|
---|
| 640 | result, it is resized. If size(X) is enough to store
|
---|
| 641 | result, it is left unchanged.
|
---|
| 642 |
|
---|
| 643 | OUTPUT PARAMETERS
|
---|
| 644 | Tags - filled with tags associated with points,
|
---|
| 645 | or, when no tags were supplied, with zeros
|
---|
| 646 |
|
---|
| 647 | NOTES
|
---|
| 648 | 1. points are ordered by distance from the query point (first = closest)
|
---|
| 649 | 2. if XY is larger than required to store result, only leading part will
|
---|
| 650 | be overwritten; trailing part will be left unchanged. So if on input
|
---|
| 651 | XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
---|
| 652 | XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
---|
| 653 | you want function to resize array according to result size, use
|
---|
| 654 | function with same name and suffix 'I'.
|
---|
| 655 |
|
---|
| 656 | SEE ALSO
|
---|
| 657 | * KDTreeQueryResultsX() X-values
|
---|
| 658 | * KDTreeQueryResultsXY() X- and Y-values
|
---|
| 659 | * KDTreeQueryResultsDistances() distances
|
---|
| 660 |
|
---|
| 661 | -- ALGLIB --
|
---|
| 662 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 663 | *************************************************************************/
|
---|
| 664 | public static void kdtreequeryresultstags(kdtree kdt, ref int[] tags)
|
---|
| 665 | {
|
---|
| 666 |
|
---|
| 667 | nearestneighbor.kdtreequeryresultstags(kdt.innerobj, ref tags);
|
---|
| 668 | return;
|
---|
| 669 | }
|
---|
| 670 |
|
---|
| 671 | /*************************************************************************
|
---|
| 672 | Distances from last query
|
---|
| 673 |
|
---|
| 674 | INPUT PARAMETERS
|
---|
| 675 | KDT - KD-tree
|
---|
| 676 | R - possibly pre-allocated buffer. If X is too small to store
|
---|
| 677 | result, it is resized. If size(X) is enough to store
|
---|
| 678 | result, it is left unchanged.
|
---|
| 679 |
|
---|
| 680 | OUTPUT PARAMETERS
|
---|
| 681 | R - filled with distances (in corresponding norm)
|
---|
| 682 |
|
---|
| 683 | NOTES
|
---|
| 684 | 1. points are ordered by distance from the query point (first = closest)
|
---|
| 685 | 2. if XY is larger than required to store result, only leading part will
|
---|
| 686 | be overwritten; trailing part will be left unchanged. So if on input
|
---|
| 687 | XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
---|
| 688 | XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
---|
| 689 | you want function to resize array according to result size, use
|
---|
| 690 | function with same name and suffix 'I'.
|
---|
| 691 |
|
---|
| 692 | SEE ALSO
|
---|
| 693 | * KDTreeQueryResultsX() X-values
|
---|
| 694 | * KDTreeQueryResultsXY() X- and Y-values
|
---|
| 695 | * KDTreeQueryResultsTags() tag values
|
---|
| 696 |
|
---|
| 697 | -- ALGLIB --
|
---|
| 698 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 699 | *************************************************************************/
|
---|
| 700 | public static void kdtreequeryresultsdistances(kdtree kdt, ref double[] r)
|
---|
| 701 | {
|
---|
| 702 |
|
---|
| 703 | nearestneighbor.kdtreequeryresultsdistances(kdt.innerobj, ref r);
|
---|
| 704 | return;
|
---|
| 705 | }
|
---|
| 706 |
|
---|
| 707 | /*************************************************************************
|
---|
| 708 | X-values from last query; 'interactive' variant for languages like Python
|
---|
| 709 | which support constructs like "X = KDTreeQueryResultsXI(KDT)" and
|
---|
| 710 | interactive mode of interpreter.
|
---|
| 711 |
|
---|
| 712 | This function allocates new array on each call, so it is significantly
|
---|
| 713 | slower than its 'non-interactive' counterpart, but it is more convenient
|
---|
| 714 | when you call it from command line.
|
---|
| 715 |
|
---|
| 716 | -- ALGLIB --
|
---|
| 717 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 718 | *************************************************************************/
|
---|
| 719 | public static void kdtreequeryresultsxi(kdtree kdt, out double[,] x)
|
---|
| 720 | {
|
---|
| 721 | x = new double[0,0];
|
---|
| 722 | nearestneighbor.kdtreequeryresultsxi(kdt.innerobj, ref x);
|
---|
| 723 | return;
|
---|
| 724 | }
|
---|
| 725 |
|
---|
| 726 | /*************************************************************************
|
---|
| 727 | XY-values from last query; 'interactive' variant for languages like Python
|
---|
| 728 | which support constructs like "XY = KDTreeQueryResultsXYI(KDT)" and
|
---|
| 729 | interactive mode of interpreter.
|
---|
| 730 |
|
---|
| 731 | This function allocates new array on each call, so it is significantly
|
---|
| 732 | slower than its 'non-interactive' counterpart, but it is more convenient
|
---|
| 733 | when you call it from command line.
|
---|
| 734 |
|
---|
| 735 | -- ALGLIB --
|
---|
| 736 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 737 | *************************************************************************/
|
---|
| 738 | public static void kdtreequeryresultsxyi(kdtree kdt, out double[,] xy)
|
---|
| 739 | {
|
---|
| 740 | xy = new double[0,0];
|
---|
| 741 | nearestneighbor.kdtreequeryresultsxyi(kdt.innerobj, ref xy);
|
---|
| 742 | return;
|
---|
| 743 | }
|
---|
| 744 |
|
---|
| 745 | /*************************************************************************
|
---|
| 746 | Tags from last query; 'interactive' variant for languages like Python
|
---|
| 747 | which support constructs like "Tags = KDTreeQueryResultsTagsI(KDT)" and
|
---|
| 748 | interactive mode of interpreter.
|
---|
| 749 |
|
---|
| 750 | This function allocates new array on each call, so it is significantly
|
---|
| 751 | slower than its 'non-interactive' counterpart, but it is more convenient
|
---|
| 752 | when you call it from command line.
|
---|
| 753 |
|
---|
| 754 | -- ALGLIB --
|
---|
| 755 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 756 | *************************************************************************/
|
---|
| 757 | public static void kdtreequeryresultstagsi(kdtree kdt, out int[] tags)
|
---|
| 758 | {
|
---|
| 759 | tags = new int[0];
|
---|
| 760 | nearestneighbor.kdtreequeryresultstagsi(kdt.innerobj, ref tags);
|
---|
| 761 | return;
|
---|
| 762 | }
|
---|
| 763 |
|
---|
| 764 | /*************************************************************************
|
---|
| 765 | Distances from last query; 'interactive' variant for languages like Python
|
---|
| 766 | which support constructs like "R = KDTreeQueryResultsDistancesI(KDT)"
|
---|
| 767 | and interactive mode of interpreter.
|
---|
| 768 |
|
---|
| 769 | This function allocates new array on each call, so it is significantly
|
---|
| 770 | slower than its 'non-interactive' counterpart, but it is more convenient
|
---|
| 771 | when you call it from command line.
|
---|
| 772 |
|
---|
| 773 | -- ALGLIB --
|
---|
| 774 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 775 | *************************************************************************/
|
---|
| 776 | public static void kdtreequeryresultsdistancesi(kdtree kdt, out double[] r)
|
---|
| 777 | {
|
---|
| 778 | r = new double[0];
|
---|
| 779 | nearestneighbor.kdtreequeryresultsdistancesi(kdt.innerobj, ref r);
|
---|
| 780 | return;
|
---|
| 781 | }
|
---|
| 782 |
|
---|
| 783 | }
|
---|
| 784 | public partial class alglib
|
---|
| 785 | {
|
---|
| 786 | public class hqrnd
|
---|
| 787 | {
|
---|
| 788 | /*************************************************************************
|
---|
| 789 | Portable high quality random number generator state.
|
---|
| 790 | Initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 791 |
|
---|
| 792 | Fields:
|
---|
| 793 | S1, S2 - seed values
|
---|
| 794 | V - precomputed value
|
---|
| 795 | MagicV - 'magic' value used to determine whether State structure
|
---|
| 796 | was correctly initialized.
|
---|
| 797 | *************************************************************************/
|
---|
| 798 | public class hqrndstate
|
---|
| 799 | {
|
---|
| 800 | public int s1;
|
---|
| 801 | public int s2;
|
---|
| 802 | public double v;
|
---|
| 803 | public int magicv;
|
---|
| 804 | };
|
---|
| 805 |
|
---|
| 806 |
|
---|
| 807 |
|
---|
| 808 |
|
---|
| 809 | public const int hqrndmax = 2147483563;
|
---|
| 810 | public const int hqrndm1 = 2147483563;
|
---|
| 811 | public const int hqrndm2 = 2147483399;
|
---|
| 812 | public const int hqrndmagic = 1634357784;
|
---|
| 813 |
|
---|
| 814 |
|
---|
| 815 | /*************************************************************************
|
---|
| 816 | HQRNDState initialization with random values which come from standard
|
---|
| 817 | RNG.
|
---|
| 818 |
|
---|
| 819 | -- ALGLIB --
|
---|
| 820 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 821 | *************************************************************************/
|
---|
| 822 | public static void hqrndrandomize(hqrndstate state)
|
---|
| 823 | {
|
---|
| 824 | hqrndseed(math.randominteger(hqrndm1), math.randominteger(hqrndm2), state);
|
---|
| 825 | }
|
---|
| 826 |
|
---|
| 827 |
|
---|
| 828 | /*************************************************************************
|
---|
| 829 | HQRNDState initialization with seed values
|
---|
| 830 |
|
---|
| 831 | -- ALGLIB --
|
---|
| 832 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 833 | *************************************************************************/
|
---|
| 834 | public static void hqrndseed(int s1,
|
---|
| 835 | int s2,
|
---|
| 836 | hqrndstate state)
|
---|
| 837 | {
|
---|
| 838 | state.s1 = s1%(hqrndm1-1)+1;
|
---|
| 839 | state.s2 = s2%(hqrndm2-1)+1;
|
---|
| 840 | state.v = (double)1/(double)hqrndmax;
|
---|
| 841 | state.magicv = hqrndmagic;
|
---|
| 842 | }
|
---|
| 843 |
|
---|
| 844 |
|
---|
| 845 | /*************************************************************************
|
---|
| 846 | This function generates random real number in (0,1),
|
---|
| 847 | not including interval boundaries
|
---|
| 848 |
|
---|
| 849 | State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 850 |
|
---|
| 851 | -- ALGLIB --
|
---|
| 852 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 853 | *************************************************************************/
|
---|
| 854 | public static double hqrnduniformr(hqrndstate state)
|
---|
| 855 | {
|
---|
| 856 | double result = 0;
|
---|
| 857 |
|
---|
| 858 | result = state.v*hqrndintegerbase(state);
|
---|
| 859 | return result;
|
---|
| 860 | }
|
---|
| 861 |
|
---|
| 862 |
|
---|
| 863 | /*************************************************************************
|
---|
| 864 | This function generates random integer number in [0, N)
|
---|
| 865 |
|
---|
| 866 | 1. N must be less than HQRNDMax-1.
|
---|
| 867 | 2. State structure must be initialized with HQRNDRandomize() or HQRNDSeed()
|
---|
| 868 |
|
---|
| 869 | -- ALGLIB --
|
---|
| 870 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 871 | *************************************************************************/
|
---|
| 872 | public static int hqrnduniformi(hqrndstate state,
|
---|
| 873 | int n)
|
---|
| 874 | {
|
---|
| 875 | int result = 0;
|
---|
| 876 | int mx = 0;
|
---|
| 877 |
|
---|
| 878 |
|
---|
| 879 | //
|
---|
| 880 | // Correct handling of N's close to RNDBaseMax
|
---|
| 881 | // (avoiding skewed distributions for RNDBaseMax<>K*N)
|
---|
| 882 | //
|
---|
| 883 | alglib.ap.assert(n>0, "HQRNDUniformI: N<=0!");
|
---|
| 884 | alglib.ap.assert(n<hqrndmax-1, "HQRNDUniformI: N>=RNDBaseMax-1!");
|
---|
| 885 | mx = hqrndmax-1-(hqrndmax-1)%n;
|
---|
| 886 | do
|
---|
| 887 | {
|
---|
| 888 | result = hqrndintegerbase(state)-1;
|
---|
| 889 | }
|
---|
| 890 | while( result>=mx );
|
---|
| 891 | result = result%n;
|
---|
| 892 | return result;
|
---|
| 893 | }
|
---|
| 894 |
|
---|
| 895 |
|
---|
| 896 | /*************************************************************************
|
---|
| 897 | Random number generator: normal numbers
|
---|
| 898 |
|
---|
| 899 | This function generates one random number from normal distribution.
|
---|
| 900 | Its performance is equal to that of HQRNDNormal2()
|
---|
| 901 |
|
---|
| 902 | State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 903 |
|
---|
| 904 | -- ALGLIB --
|
---|
| 905 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 906 | *************************************************************************/
|
---|
| 907 | public static double hqrndnormal(hqrndstate state)
|
---|
| 908 | {
|
---|
| 909 | double result = 0;
|
---|
| 910 | double v1 = 0;
|
---|
| 911 | double v2 = 0;
|
---|
| 912 |
|
---|
| 913 | hqrndnormal2(state, ref v1, ref v2);
|
---|
| 914 | result = v1;
|
---|
| 915 | return result;
|
---|
| 916 | }
|
---|
| 917 |
|
---|
| 918 |
|
---|
| 919 | /*************************************************************************
|
---|
| 920 | Random number generator: random X and Y such that X^2+Y^2=1
|
---|
| 921 |
|
---|
| 922 | State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 923 |
|
---|
| 924 | -- ALGLIB --
|
---|
| 925 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 926 | *************************************************************************/
|
---|
| 927 | public static void hqrndunit2(hqrndstate state,
|
---|
| 928 | ref double x,
|
---|
| 929 | ref double y)
|
---|
| 930 | {
|
---|
| 931 | double v = 0;
|
---|
| 932 | double mx = 0;
|
---|
| 933 | double mn = 0;
|
---|
| 934 |
|
---|
| 935 | x = 0;
|
---|
| 936 | y = 0;
|
---|
| 937 |
|
---|
| 938 | do
|
---|
| 939 | {
|
---|
| 940 | hqrndnormal2(state, ref x, ref y);
|
---|
| 941 | }
|
---|
| 942 | while( !((double)(x)!=(double)(0) || (double)(y)!=(double)(0)) );
|
---|
| 943 | mx = Math.Max(Math.Abs(x), Math.Abs(y));
|
---|
| 944 | mn = Math.Min(Math.Abs(x), Math.Abs(y));
|
---|
| 945 | v = mx*Math.Sqrt(1+math.sqr(mn/mx));
|
---|
| 946 | x = x/v;
|
---|
| 947 | y = y/v;
|
---|
| 948 | }
|
---|
| 949 |
|
---|
| 950 |
|
---|
| 951 | /*************************************************************************
|
---|
| 952 | Random number generator: normal numbers
|
---|
| 953 |
|
---|
| 954 | This function generates two independent random numbers from normal
|
---|
| 955 | distribution. Its performance is equal to that of HQRNDNormal()
|
---|
| 956 |
|
---|
| 957 | State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 958 |
|
---|
| 959 | -- ALGLIB --
|
---|
| 960 | Copyright 02.12.2009 by Bochkanov Sergey
|
---|
| 961 | *************************************************************************/
|
---|
| 962 | public static void hqrndnormal2(hqrndstate state,
|
---|
| 963 | ref double x1,
|
---|
| 964 | ref double x2)
|
---|
| 965 | {
|
---|
| 966 | double u = 0;
|
---|
| 967 | double v = 0;
|
---|
| 968 | double s = 0;
|
---|
| 969 |
|
---|
| 970 | x1 = 0;
|
---|
| 971 | x2 = 0;
|
---|
| 972 |
|
---|
| 973 | while( true )
|
---|
| 974 | {
|
---|
| 975 | u = 2*hqrnduniformr(state)-1;
|
---|
| 976 | v = 2*hqrnduniformr(state)-1;
|
---|
| 977 | s = math.sqr(u)+math.sqr(v);
|
---|
| 978 | if( (double)(s)>(double)(0) && (double)(s)<(double)(1) )
|
---|
| 979 | {
|
---|
| 980 |
|
---|
| 981 | //
|
---|
| 982 | // two Sqrt's instead of one to
|
---|
| 983 | // avoid overflow when S is too small
|
---|
| 984 | //
|
---|
| 985 | s = Math.Sqrt(-(2*Math.Log(s)))/Math.Sqrt(s);
|
---|
| 986 | x1 = u*s;
|
---|
| 987 | x2 = v*s;
|
---|
| 988 | return;
|
---|
| 989 | }
|
---|
| 990 | }
|
---|
| 991 | }
|
---|
| 992 |
|
---|
| 993 |
|
---|
| 994 | /*************************************************************************
|
---|
| 995 | Random number generator: exponential distribution
|
---|
| 996 |
|
---|
| 997 | State structure must be initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 998 |
|
---|
| 999 | -- ALGLIB --
|
---|
| 1000 | Copyright 11.08.2007 by Bochkanov Sergey
|
---|
| 1001 | *************************************************************************/
|
---|
| 1002 | public static double hqrndexponential(hqrndstate state,
|
---|
| 1003 | double lambdav)
|
---|
| 1004 | {
|
---|
| 1005 | double result = 0;
|
---|
| 1006 |
|
---|
| 1007 | alglib.ap.assert((double)(lambdav)>(double)(0), "HQRNDExponential: LambdaV<=0!");
|
---|
| 1008 | result = -(Math.Log(hqrnduniformr(state))/lambdav);
|
---|
| 1009 | return result;
|
---|
| 1010 | }
|
---|
| 1011 |
|
---|
| 1012 |
|
---|
| 1013 | /*************************************************************************
|
---|
| 1014 | This function generates random number from discrete distribution given by
|
---|
| 1015 | finite sample X.
|
---|
| 1016 |
|
---|
| 1017 | INPUT PARAMETERS
|
---|
| 1018 | State - high quality random number generator, must be
|
---|
| 1019 | initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 1020 | X - finite sample
|
---|
| 1021 | N - number of elements to use, N>=1
|
---|
| 1022 |
|
---|
| 1023 | RESULT
|
---|
| 1024 | this function returns one of the X[i] for random i=0..N-1
|
---|
| 1025 |
|
---|
| 1026 | -- ALGLIB --
|
---|
| 1027 | Copyright 08.11.2011 by Bochkanov Sergey
|
---|
| 1028 | *************************************************************************/
|
---|
| 1029 | public static double hqrnddiscrete(hqrndstate state,
|
---|
| 1030 | double[] x,
|
---|
| 1031 | int n)
|
---|
| 1032 | {
|
---|
| 1033 | double result = 0;
|
---|
| 1034 |
|
---|
| 1035 | alglib.ap.assert(n>0, "HQRNDDiscrete: N<=0");
|
---|
| 1036 | alglib.ap.assert(n<=alglib.ap.len(x), "HQRNDDiscrete: Length(X)<N");
|
---|
| 1037 | result = x[hqrnduniformi(state, n)];
|
---|
| 1038 | return result;
|
---|
| 1039 | }
|
---|
| 1040 |
|
---|
| 1041 |
|
---|
| 1042 | /*************************************************************************
|
---|
| 1043 | This function generates random number from continuous distribution given
|
---|
| 1044 | by finite sample X.
|
---|
| 1045 |
|
---|
| 1046 | INPUT PARAMETERS
|
---|
| 1047 | State - high quality random number generator, must be
|
---|
| 1048 | initialized with HQRNDRandomize() or HQRNDSeed().
|
---|
| 1049 | X - finite sample, array[N] (can be larger, in this case only
|
---|
| 1050 | leading N elements are used). THIS ARRAY MUST BE SORTED BY
|
---|
| 1051 | ASCENDING.
|
---|
| 1052 | N - number of elements to use, N>=1
|
---|
| 1053 |
|
---|
| 1054 | RESULT
|
---|
| 1055 | this function returns random number from continuous distribution which
|
---|
| 1056 | tries to approximate X as mush as possible. min(X)<=Result<=max(X).
|
---|
| 1057 |
|
---|
| 1058 | -- ALGLIB --
|
---|
| 1059 | Copyright 08.11.2011 by Bochkanov Sergey
|
---|
| 1060 | *************************************************************************/
|
---|
| 1061 | public static double hqrndcontinuous(hqrndstate state,
|
---|
| 1062 | double[] x,
|
---|
| 1063 | int n)
|
---|
| 1064 | {
|
---|
| 1065 | double result = 0;
|
---|
| 1066 | double mx = 0;
|
---|
| 1067 | double mn = 0;
|
---|
| 1068 | int i = 0;
|
---|
| 1069 |
|
---|
| 1070 | alglib.ap.assert(n>0, "HQRNDContinuous: N<=0");
|
---|
| 1071 | alglib.ap.assert(n<=alglib.ap.len(x), "HQRNDContinuous: Length(X)<N");
|
---|
| 1072 | if( n==1 )
|
---|
| 1073 | {
|
---|
| 1074 | result = x[0];
|
---|
| 1075 | return result;
|
---|
| 1076 | }
|
---|
| 1077 | i = hqrnduniformi(state, n-1);
|
---|
| 1078 | mn = x[i];
|
---|
| 1079 | mx = x[i+1];
|
---|
| 1080 | alglib.ap.assert((double)(mx)>=(double)(mn), "HQRNDDiscrete: X is not sorted by ascending");
|
---|
| 1081 | if( (double)(mx)!=(double)(mn) )
|
---|
| 1082 | {
|
---|
| 1083 | result = (mx-mn)*hqrnduniformr(state)+mn;
|
---|
| 1084 | }
|
---|
| 1085 | else
|
---|
| 1086 | {
|
---|
| 1087 | result = mn;
|
---|
| 1088 | }
|
---|
| 1089 | return result;
|
---|
| 1090 | }
|
---|
| 1091 |
|
---|
| 1092 |
|
---|
| 1093 | /*************************************************************************
|
---|
| 1094 |
|
---|
| 1095 | L'Ecuyer, Efficient and portable combined random number generators
|
---|
| 1096 | *************************************************************************/
|
---|
| 1097 | private static int hqrndintegerbase(hqrndstate state)
|
---|
| 1098 | {
|
---|
| 1099 | int result = 0;
|
---|
| 1100 | int k = 0;
|
---|
| 1101 |
|
---|
| 1102 | alglib.ap.assert(state.magicv==hqrndmagic, "HQRNDIntegerBase: State is not correctly initialized!");
|
---|
| 1103 | k = state.s1/53668;
|
---|
| 1104 | state.s1 = 40014*(state.s1-k*53668)-k*12211;
|
---|
| 1105 | if( state.s1<0 )
|
---|
| 1106 | {
|
---|
| 1107 | state.s1 = state.s1+2147483563;
|
---|
| 1108 | }
|
---|
| 1109 | k = state.s2/52774;
|
---|
| 1110 | state.s2 = 40692*(state.s2-k*52774)-k*3791;
|
---|
| 1111 | if( state.s2<0 )
|
---|
| 1112 | {
|
---|
| 1113 | state.s2 = state.s2+2147483399;
|
---|
| 1114 | }
|
---|
| 1115 |
|
---|
| 1116 | //
|
---|
| 1117 | // Result
|
---|
| 1118 | //
|
---|
| 1119 | result = state.s1-state.s2;
|
---|
| 1120 | if( result<1 )
|
---|
| 1121 | {
|
---|
| 1122 | result = result+2147483562;
|
---|
| 1123 | }
|
---|
| 1124 | return result;
|
---|
| 1125 | }
|
---|
| 1126 |
|
---|
| 1127 |
|
---|
| 1128 | }
|
---|
| 1129 | public class nearestneighbor
|
---|
| 1130 | {
|
---|
| 1131 | public class kdtree
|
---|
| 1132 | {
|
---|
| 1133 | public int n;
|
---|
| 1134 | public int nx;
|
---|
| 1135 | public int ny;
|
---|
| 1136 | public int normtype;
|
---|
| 1137 | public double[,] xy;
|
---|
| 1138 | public int[] tags;
|
---|
| 1139 | public double[] boxmin;
|
---|
| 1140 | public double[] boxmax;
|
---|
| 1141 | public int[] nodes;
|
---|
| 1142 | public double[] splits;
|
---|
| 1143 | public double[] x;
|
---|
| 1144 | public int kneeded;
|
---|
| 1145 | public double rneeded;
|
---|
| 1146 | public bool selfmatch;
|
---|
| 1147 | public double approxf;
|
---|
| 1148 | public int kcur;
|
---|
| 1149 | public int[] idx;
|
---|
| 1150 | public double[] r;
|
---|
| 1151 | public double[] buf;
|
---|
| 1152 | public double[] curboxmin;
|
---|
| 1153 | public double[] curboxmax;
|
---|
| 1154 | public double curdist;
|
---|
| 1155 | public int debugcounter;
|
---|
| 1156 | public kdtree()
|
---|
| 1157 | {
|
---|
| 1158 | xy = new double[0,0];
|
---|
| 1159 | tags = new int[0];
|
---|
| 1160 | boxmin = new double[0];
|
---|
| 1161 | boxmax = new double[0];
|
---|
| 1162 | nodes = new int[0];
|
---|
| 1163 | splits = new double[0];
|
---|
| 1164 | x = new double[0];
|
---|
| 1165 | idx = new int[0];
|
---|
| 1166 | r = new double[0];
|
---|
| 1167 | buf = new double[0];
|
---|
| 1168 | curboxmin = new double[0];
|
---|
| 1169 | curboxmax = new double[0];
|
---|
| 1170 | }
|
---|
| 1171 | };
|
---|
| 1172 |
|
---|
| 1173 |
|
---|
| 1174 |
|
---|
| 1175 |
|
---|
| 1176 | public const int splitnodesize = 6;
|
---|
| 1177 | public const int kdtreefirstversion = 0;
|
---|
| 1178 |
|
---|
| 1179 |
|
---|
| 1180 | /*************************************************************************
|
---|
| 1181 | KD-tree creation
|
---|
| 1182 |
|
---|
| 1183 | This subroutine creates KD-tree from set of X-values and optional Y-values
|
---|
| 1184 |
|
---|
| 1185 | INPUT PARAMETERS
|
---|
| 1186 | XY - dataset, array[0..N-1,0..NX+NY-1].
|
---|
| 1187 | one row corresponds to one point.
|
---|
| 1188 | first NX columns contain X-values, next NY (NY may be zero)
|
---|
| 1189 | columns may contain associated Y-values
|
---|
| 1190 | N - number of points, N>=0.
|
---|
| 1191 | NX - space dimension, NX>=1.
|
---|
| 1192 | NY - number of optional Y-values, NY>=0.
|
---|
| 1193 | NormType- norm type:
|
---|
| 1194 | * 0 denotes infinity-norm
|
---|
| 1195 | * 1 denotes 1-norm
|
---|
| 1196 | * 2 denotes 2-norm (Euclidean norm)
|
---|
| 1197 |
|
---|
| 1198 | OUTPUT PARAMETERS
|
---|
| 1199 | KDT - KD-tree
|
---|
| 1200 |
|
---|
| 1201 |
|
---|
| 1202 | NOTES
|
---|
| 1203 |
|
---|
| 1204 | 1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
---|
| 1205 | requirements.
|
---|
| 1206 | 2. Although KD-trees may be used with any combination of N and NX, they
|
---|
| 1207 | are more efficient than brute-force search only when N >> 4^NX. So they
|
---|
| 1208 | are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
---|
| 1209 | inefficient case, because simple binary search (without additional
|
---|
| 1210 | structures) is much more efficient in such tasks than KD-trees.
|
---|
| 1211 |
|
---|
| 1212 | -- ALGLIB --
|
---|
| 1213 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1214 | *************************************************************************/
|
---|
| 1215 | public static void kdtreebuild(double[,] xy,
|
---|
| 1216 | int n,
|
---|
| 1217 | int nx,
|
---|
| 1218 | int ny,
|
---|
| 1219 | int normtype,
|
---|
| 1220 | kdtree kdt)
|
---|
| 1221 | {
|
---|
| 1222 | int[] tags = new int[0];
|
---|
| 1223 | int i = 0;
|
---|
| 1224 |
|
---|
| 1225 | alglib.ap.assert(n>=0, "KDTreeBuild: N<0");
|
---|
| 1226 | alglib.ap.assert(nx>=1, "KDTreeBuild: NX<1");
|
---|
| 1227 | alglib.ap.assert(ny>=0, "KDTreeBuild: NY<0");
|
---|
| 1228 | alglib.ap.assert(normtype>=0 && normtype<=2, "KDTreeBuild: incorrect NormType");
|
---|
| 1229 | alglib.ap.assert(alglib.ap.rows(xy)>=n, "KDTreeBuild: rows(X)<N");
|
---|
| 1230 | alglib.ap.assert(alglib.ap.cols(xy)>=nx+ny || n==0, "KDTreeBuild: cols(X)<NX+NY");
|
---|
| 1231 | alglib.ap.assert(apserv.apservisfinitematrix(xy, n, nx+ny), "KDTreeBuild: X contains infinite or NaN values");
|
---|
| 1232 | if( n>0 )
|
---|
| 1233 | {
|
---|
| 1234 | tags = new int[n];
|
---|
| 1235 | for(i=0; i<=n-1; i++)
|
---|
| 1236 | {
|
---|
| 1237 | tags[i] = 0;
|
---|
| 1238 | }
|
---|
| 1239 | }
|
---|
| 1240 | kdtreebuildtagged(xy, tags, n, nx, ny, normtype, kdt);
|
---|
| 1241 | }
|
---|
| 1242 |
|
---|
| 1243 |
|
---|
| 1244 | /*************************************************************************
|
---|
| 1245 | KD-tree creation
|
---|
| 1246 |
|
---|
| 1247 | This subroutine creates KD-tree from set of X-values, integer tags and
|
---|
| 1248 | optional Y-values
|
---|
| 1249 |
|
---|
| 1250 | INPUT PARAMETERS
|
---|
| 1251 | XY - dataset, array[0..N-1,0..NX+NY-1].
|
---|
| 1252 | one row corresponds to one point.
|
---|
| 1253 | first NX columns contain X-values, next NY (NY may be zero)
|
---|
| 1254 | columns may contain associated Y-values
|
---|
| 1255 | Tags - tags, array[0..N-1], contains integer tags associated
|
---|
| 1256 | with points.
|
---|
| 1257 | N - number of points, N>=0
|
---|
| 1258 | NX - space dimension, NX>=1.
|
---|
| 1259 | NY - number of optional Y-values, NY>=0.
|
---|
| 1260 | NormType- norm type:
|
---|
| 1261 | * 0 denotes infinity-norm
|
---|
| 1262 | * 1 denotes 1-norm
|
---|
| 1263 | * 2 denotes 2-norm (Euclidean norm)
|
---|
| 1264 |
|
---|
| 1265 | OUTPUT PARAMETERS
|
---|
| 1266 | KDT - KD-tree
|
---|
| 1267 |
|
---|
| 1268 | NOTES
|
---|
| 1269 |
|
---|
| 1270 | 1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory
|
---|
| 1271 | requirements.
|
---|
| 1272 | 2. Although KD-trees may be used with any combination of N and NX, they
|
---|
| 1273 | are more efficient than brute-force search only when N >> 4^NX. So they
|
---|
| 1274 | are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another
|
---|
| 1275 | inefficient case, because simple binary search (without additional
|
---|
| 1276 | structures) is much more efficient in such tasks than KD-trees.
|
---|
| 1277 |
|
---|
| 1278 | -- ALGLIB --
|
---|
| 1279 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1280 | *************************************************************************/
|
---|
| 1281 | public static void kdtreebuildtagged(double[,] xy,
|
---|
| 1282 | int[] tags,
|
---|
| 1283 | int n,
|
---|
| 1284 | int nx,
|
---|
| 1285 | int ny,
|
---|
| 1286 | int normtype,
|
---|
| 1287 | kdtree kdt)
|
---|
| 1288 | {
|
---|
| 1289 | int i = 0;
|
---|
| 1290 | int j = 0;
|
---|
| 1291 | int maxnodes = 0;
|
---|
| 1292 | int nodesoffs = 0;
|
---|
| 1293 | int splitsoffs = 0;
|
---|
| 1294 | int i_ = 0;
|
---|
| 1295 | int i1_ = 0;
|
---|
| 1296 |
|
---|
| 1297 | alglib.ap.assert(n>=0, "KDTreeBuildTagged: N<0");
|
---|
| 1298 | alglib.ap.assert(nx>=1, "KDTreeBuildTagged: NX<1");
|
---|
| 1299 | alglib.ap.assert(ny>=0, "KDTreeBuildTagged: NY<0");
|
---|
| 1300 | alglib.ap.assert(normtype>=0 && normtype<=2, "KDTreeBuildTagged: incorrect NormType");
|
---|
| 1301 | alglib.ap.assert(alglib.ap.rows(xy)>=n, "KDTreeBuildTagged: rows(X)<N");
|
---|
| 1302 | alglib.ap.assert(alglib.ap.cols(xy)>=nx+ny || n==0, "KDTreeBuildTagged: cols(X)<NX+NY");
|
---|
| 1303 | alglib.ap.assert(apserv.apservisfinitematrix(xy, n, nx+ny), "KDTreeBuildTagged: X contains infinite or NaN values");
|
---|
| 1304 |
|
---|
| 1305 | //
|
---|
| 1306 | // initialize
|
---|
| 1307 | //
|
---|
| 1308 | kdt.n = n;
|
---|
| 1309 | kdt.nx = nx;
|
---|
| 1310 | kdt.ny = ny;
|
---|
| 1311 | kdt.normtype = normtype;
|
---|
| 1312 | kdt.kcur = 0;
|
---|
| 1313 |
|
---|
| 1314 | //
|
---|
| 1315 | // N=0 => quick exit
|
---|
| 1316 | //
|
---|
| 1317 | if( n==0 )
|
---|
| 1318 | {
|
---|
| 1319 | return;
|
---|
| 1320 | }
|
---|
| 1321 |
|
---|
| 1322 | //
|
---|
| 1323 | // Allocate
|
---|
| 1324 | //
|
---|
| 1325 | kdtreeallocdatasetindependent(kdt, nx, ny);
|
---|
| 1326 | kdtreeallocdatasetdependent(kdt, n, nx, ny);
|
---|
| 1327 |
|
---|
| 1328 | //
|
---|
| 1329 | // Initial fill
|
---|
| 1330 | //
|
---|
| 1331 | for(i=0; i<=n-1; i++)
|
---|
| 1332 | {
|
---|
| 1333 | for(i_=0; i_<=nx-1;i_++)
|
---|
| 1334 | {
|
---|
| 1335 | kdt.xy[i,i_] = xy[i,i_];
|
---|
| 1336 | }
|
---|
| 1337 | i1_ = (0) - (nx);
|
---|
| 1338 | for(i_=nx; i_<=2*nx+ny-1;i_++)
|
---|
| 1339 | {
|
---|
| 1340 | kdt.xy[i,i_] = xy[i,i_+i1_];
|
---|
| 1341 | }
|
---|
| 1342 | kdt.tags[i] = tags[i];
|
---|
| 1343 | }
|
---|
| 1344 |
|
---|
| 1345 | //
|
---|
| 1346 | // Determine bounding box
|
---|
| 1347 | //
|
---|
| 1348 | for(i_=0; i_<=nx-1;i_++)
|
---|
| 1349 | {
|
---|
| 1350 | kdt.boxmin[i_] = kdt.xy[0,i_];
|
---|
| 1351 | }
|
---|
| 1352 | for(i_=0; i_<=nx-1;i_++)
|
---|
| 1353 | {
|
---|
| 1354 | kdt.boxmax[i_] = kdt.xy[0,i_];
|
---|
| 1355 | }
|
---|
| 1356 | for(i=1; i<=n-1; i++)
|
---|
| 1357 | {
|
---|
| 1358 | for(j=0; j<=nx-1; j++)
|
---|
| 1359 | {
|
---|
| 1360 | kdt.boxmin[j] = Math.Min(kdt.boxmin[j], kdt.xy[i,j]);
|
---|
| 1361 | kdt.boxmax[j] = Math.Max(kdt.boxmax[j], kdt.xy[i,j]);
|
---|
| 1362 | }
|
---|
| 1363 | }
|
---|
| 1364 |
|
---|
| 1365 | //
|
---|
| 1366 | // prepare tree structure
|
---|
| 1367 | // * MaxNodes=N because we guarantee no trivial splits, i.e.
|
---|
| 1368 | // every split will generate two non-empty boxes
|
---|
| 1369 | //
|
---|
| 1370 | maxnodes = n;
|
---|
| 1371 | kdt.nodes = new int[splitnodesize*2*maxnodes];
|
---|
| 1372 | kdt.splits = new double[2*maxnodes];
|
---|
| 1373 | nodesoffs = 0;
|
---|
| 1374 | splitsoffs = 0;
|
---|
| 1375 | for(i_=0; i_<=nx-1;i_++)
|
---|
| 1376 | {
|
---|
| 1377 | kdt.curboxmin[i_] = kdt.boxmin[i_];
|
---|
| 1378 | }
|
---|
| 1379 | for(i_=0; i_<=nx-1;i_++)
|
---|
| 1380 | {
|
---|
| 1381 | kdt.curboxmax[i_] = kdt.boxmax[i_];
|
---|
| 1382 | }
|
---|
| 1383 | kdtreegeneratetreerec(kdt, ref nodesoffs, ref splitsoffs, 0, n, 8);
|
---|
| 1384 | }
|
---|
| 1385 |
|
---|
| 1386 |
|
---|
| 1387 | /*************************************************************************
|
---|
| 1388 | K-NN query: K nearest neighbors
|
---|
| 1389 |
|
---|
| 1390 | INPUT PARAMETERS
|
---|
| 1391 | KDT - KD-tree
|
---|
| 1392 | X - point, array[0..NX-1].
|
---|
| 1393 | K - number of neighbors to return, K>=1
|
---|
| 1394 | SelfMatch - whether self-matches are allowed:
|
---|
| 1395 | * if True, nearest neighbor may be the point itself
|
---|
| 1396 | (if it exists in original dataset)
|
---|
| 1397 | * if False, then only points with non-zero distance
|
---|
| 1398 | are returned
|
---|
| 1399 | * if not given, considered True
|
---|
| 1400 |
|
---|
| 1401 | RESULT
|
---|
| 1402 | number of actual neighbors found (either K or N, if K>N).
|
---|
| 1403 |
|
---|
| 1404 | This subroutine performs query and stores its result in the internal
|
---|
| 1405 | structures of the KD-tree. You can use following subroutines to obtain
|
---|
| 1406 | these results:
|
---|
| 1407 | * KDTreeQueryResultsX() to get X-values
|
---|
| 1408 | * KDTreeQueryResultsXY() to get X- and Y-values
|
---|
| 1409 | * KDTreeQueryResultsTags() to get tag values
|
---|
| 1410 | * KDTreeQueryResultsDistances() to get distances
|
---|
| 1411 |
|
---|
| 1412 | -- ALGLIB --
|
---|
| 1413 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1414 | *************************************************************************/
|
---|
| 1415 | public static int kdtreequeryknn(kdtree kdt,
|
---|
| 1416 | double[] x,
|
---|
| 1417 | int k,
|
---|
| 1418 | bool selfmatch)
|
---|
| 1419 | {
|
---|
| 1420 | int result = 0;
|
---|
| 1421 |
|
---|
| 1422 | alglib.ap.assert(k>=1, "KDTreeQueryKNN: K<1!");
|
---|
| 1423 | alglib.ap.assert(alglib.ap.len(x)>=kdt.nx, "KDTreeQueryKNN: Length(X)<NX!");
|
---|
| 1424 | alglib.ap.assert(apserv.isfinitevector(x, kdt.nx), "KDTreeQueryKNN: X contains infinite or NaN values!");
|
---|
| 1425 | result = kdtreequeryaknn(kdt, x, k, selfmatch, 0.0);
|
---|
| 1426 | return result;
|
---|
| 1427 | }
|
---|
| 1428 |
|
---|
| 1429 |
|
---|
| 1430 | /*************************************************************************
|
---|
| 1431 | R-NN query: all points within R-sphere centered at X
|
---|
| 1432 |
|
---|
| 1433 | INPUT PARAMETERS
|
---|
| 1434 | KDT - KD-tree
|
---|
| 1435 | X - point, array[0..NX-1].
|
---|
| 1436 | R - radius of sphere (in corresponding norm), R>0
|
---|
| 1437 | SelfMatch - whether self-matches are allowed:
|
---|
| 1438 | * if True, nearest neighbor may be the point itself
|
---|
| 1439 | (if it exists in original dataset)
|
---|
| 1440 | * if False, then only points with non-zero distance
|
---|
| 1441 | are returned
|
---|
| 1442 | * if not given, considered True
|
---|
| 1443 |
|
---|
| 1444 | RESULT
|
---|
| 1445 | number of neighbors found, >=0
|
---|
| 1446 |
|
---|
| 1447 | This subroutine performs query and stores its result in the internal
|
---|
| 1448 | structures of the KD-tree. You can use following subroutines to obtain
|
---|
| 1449 | actual results:
|
---|
| 1450 | * KDTreeQueryResultsX() to get X-values
|
---|
| 1451 | * KDTreeQueryResultsXY() to get X- and Y-values
|
---|
| 1452 | * KDTreeQueryResultsTags() to get tag values
|
---|
| 1453 | * KDTreeQueryResultsDistances() to get distances
|
---|
| 1454 |
|
---|
| 1455 | -- ALGLIB --
|
---|
| 1456 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1457 | *************************************************************************/
|
---|
| 1458 | public static int kdtreequeryrnn(kdtree kdt,
|
---|
| 1459 | double[] x,
|
---|
| 1460 | double r,
|
---|
| 1461 | bool selfmatch)
|
---|
| 1462 | {
|
---|
| 1463 | int result = 0;
|
---|
| 1464 | int i = 0;
|
---|
| 1465 | int j = 0;
|
---|
| 1466 |
|
---|
| 1467 | alglib.ap.assert((double)(r)>(double)(0), "KDTreeQueryRNN: incorrect R!");
|
---|
| 1468 | alglib.ap.assert(alglib.ap.len(x)>=kdt.nx, "KDTreeQueryRNN: Length(X)<NX!");
|
---|
| 1469 | alglib.ap.assert(apserv.isfinitevector(x, kdt.nx), "KDTreeQueryRNN: X contains infinite or NaN values!");
|
---|
| 1470 |
|
---|
| 1471 | //
|
---|
| 1472 | // Handle special case: KDT.N=0
|
---|
| 1473 | //
|
---|
| 1474 | if( kdt.n==0 )
|
---|
| 1475 | {
|
---|
| 1476 | kdt.kcur = 0;
|
---|
| 1477 | result = 0;
|
---|
| 1478 | return result;
|
---|
| 1479 | }
|
---|
| 1480 |
|
---|
| 1481 | //
|
---|
| 1482 | // Prepare parameters
|
---|
| 1483 | //
|
---|
| 1484 | kdt.kneeded = 0;
|
---|
| 1485 | if( kdt.normtype!=2 )
|
---|
| 1486 | {
|
---|
| 1487 | kdt.rneeded = r;
|
---|
| 1488 | }
|
---|
| 1489 | else
|
---|
| 1490 | {
|
---|
| 1491 | kdt.rneeded = math.sqr(r);
|
---|
| 1492 | }
|
---|
| 1493 | kdt.selfmatch = selfmatch;
|
---|
| 1494 | kdt.approxf = 1;
|
---|
| 1495 | kdt.kcur = 0;
|
---|
| 1496 |
|
---|
| 1497 | //
|
---|
| 1498 | // calculate distance from point to current bounding box
|
---|
| 1499 | //
|
---|
| 1500 | kdtreeinitbox(kdt, x);
|
---|
| 1501 |
|
---|
| 1502 | //
|
---|
| 1503 | // call recursive search
|
---|
| 1504 | // results are returned as heap
|
---|
| 1505 | //
|
---|
| 1506 | kdtreequerynnrec(kdt, 0);
|
---|
| 1507 |
|
---|
| 1508 | //
|
---|
| 1509 | // pop from heap to generate ordered representation
|
---|
| 1510 | //
|
---|
| 1511 | // last element is not pop'ed because it is already in
|
---|
| 1512 | // its place
|
---|
| 1513 | //
|
---|
| 1514 | result = kdt.kcur;
|
---|
| 1515 | j = kdt.kcur;
|
---|
| 1516 | for(i=kdt.kcur; i>=2; i--)
|
---|
| 1517 | {
|
---|
| 1518 | tsort.tagheappopi(ref kdt.r, ref kdt.idx, ref j);
|
---|
| 1519 | }
|
---|
| 1520 | return result;
|
---|
| 1521 | }
|
---|
| 1522 |
|
---|
| 1523 |
|
---|
| 1524 | /*************************************************************************
|
---|
| 1525 | K-NN query: approximate K nearest neighbors
|
---|
| 1526 |
|
---|
| 1527 | INPUT PARAMETERS
|
---|
| 1528 | KDT - KD-tree
|
---|
| 1529 | X - point, array[0..NX-1].
|
---|
| 1530 | K - number of neighbors to return, K>=1
|
---|
| 1531 | SelfMatch - whether self-matches are allowed:
|
---|
| 1532 | * if True, nearest neighbor may be the point itself
|
---|
| 1533 | (if it exists in original dataset)
|
---|
| 1534 | * if False, then only points with non-zero distance
|
---|
| 1535 | are returned
|
---|
| 1536 | * if not given, considered True
|
---|
| 1537 | Eps - approximation factor, Eps>=0. eps-approximate nearest
|
---|
| 1538 | neighbor is a neighbor whose distance from X is at
|
---|
| 1539 | most (1+eps) times distance of true nearest neighbor.
|
---|
| 1540 |
|
---|
| 1541 | RESULT
|
---|
| 1542 | number of actual neighbors found (either K or N, if K>N).
|
---|
| 1543 |
|
---|
| 1544 | NOTES
|
---|
| 1545 | significant performance gain may be achieved only when Eps is is on
|
---|
| 1546 | the order of magnitude of 1 or larger.
|
---|
| 1547 |
|
---|
| 1548 | This subroutine performs query and stores its result in the internal
|
---|
| 1549 | structures of the KD-tree. You can use following subroutines to obtain
|
---|
| 1550 | these results:
|
---|
| 1551 | * KDTreeQueryResultsX() to get X-values
|
---|
| 1552 | * KDTreeQueryResultsXY() to get X- and Y-values
|
---|
| 1553 | * KDTreeQueryResultsTags() to get tag values
|
---|
| 1554 | * KDTreeQueryResultsDistances() to get distances
|
---|
| 1555 |
|
---|
| 1556 | -- ALGLIB --
|
---|
| 1557 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1558 | *************************************************************************/
|
---|
| 1559 | public static int kdtreequeryaknn(kdtree kdt,
|
---|
| 1560 | double[] x,
|
---|
| 1561 | int k,
|
---|
| 1562 | bool selfmatch,
|
---|
| 1563 | double eps)
|
---|
| 1564 | {
|
---|
| 1565 | int result = 0;
|
---|
| 1566 | int i = 0;
|
---|
| 1567 | int j = 0;
|
---|
| 1568 |
|
---|
| 1569 | alglib.ap.assert(k>0, "KDTreeQueryAKNN: incorrect K!");
|
---|
| 1570 | alglib.ap.assert((double)(eps)>=(double)(0), "KDTreeQueryAKNN: incorrect Eps!");
|
---|
| 1571 | alglib.ap.assert(alglib.ap.len(x)>=kdt.nx, "KDTreeQueryAKNN: Length(X)<NX!");
|
---|
| 1572 | alglib.ap.assert(apserv.isfinitevector(x, kdt.nx), "KDTreeQueryAKNN: X contains infinite or NaN values!");
|
---|
| 1573 |
|
---|
| 1574 | //
|
---|
| 1575 | // Handle special case: KDT.N=0
|
---|
| 1576 | //
|
---|
| 1577 | if( kdt.n==0 )
|
---|
| 1578 | {
|
---|
| 1579 | kdt.kcur = 0;
|
---|
| 1580 | result = 0;
|
---|
| 1581 | return result;
|
---|
| 1582 | }
|
---|
| 1583 |
|
---|
| 1584 | //
|
---|
| 1585 | // Prepare parameters
|
---|
| 1586 | //
|
---|
| 1587 | k = Math.Min(k, kdt.n);
|
---|
| 1588 | kdt.kneeded = k;
|
---|
| 1589 | kdt.rneeded = 0;
|
---|
| 1590 | kdt.selfmatch = selfmatch;
|
---|
| 1591 | if( kdt.normtype==2 )
|
---|
| 1592 | {
|
---|
| 1593 | kdt.approxf = 1/math.sqr(1+eps);
|
---|
| 1594 | }
|
---|
| 1595 | else
|
---|
| 1596 | {
|
---|
| 1597 | kdt.approxf = 1/(1+eps);
|
---|
| 1598 | }
|
---|
| 1599 | kdt.kcur = 0;
|
---|
| 1600 |
|
---|
| 1601 | //
|
---|
| 1602 | // calculate distance from point to current bounding box
|
---|
| 1603 | //
|
---|
| 1604 | kdtreeinitbox(kdt, x);
|
---|
| 1605 |
|
---|
| 1606 | //
|
---|
| 1607 | // call recursive search
|
---|
| 1608 | // results are returned as heap
|
---|
| 1609 | //
|
---|
| 1610 | kdtreequerynnrec(kdt, 0);
|
---|
| 1611 |
|
---|
| 1612 | //
|
---|
| 1613 | // pop from heap to generate ordered representation
|
---|
| 1614 | //
|
---|
| 1615 | // last element is non pop'ed because it is already in
|
---|
| 1616 | // its place
|
---|
| 1617 | //
|
---|
| 1618 | result = kdt.kcur;
|
---|
| 1619 | j = kdt.kcur;
|
---|
| 1620 | for(i=kdt.kcur; i>=2; i--)
|
---|
| 1621 | {
|
---|
| 1622 | tsort.tagheappopi(ref kdt.r, ref kdt.idx, ref j);
|
---|
| 1623 | }
|
---|
| 1624 | return result;
|
---|
| 1625 | }
|
---|
| 1626 |
|
---|
| 1627 |
|
---|
| 1628 | /*************************************************************************
|
---|
| 1629 | X-values from last query
|
---|
| 1630 |
|
---|
| 1631 | INPUT PARAMETERS
|
---|
| 1632 | KDT - KD-tree
|
---|
| 1633 | X - possibly pre-allocated buffer. If X is too small to store
|
---|
| 1634 | result, it is resized. If size(X) is enough to store
|
---|
| 1635 | result, it is left unchanged.
|
---|
| 1636 |
|
---|
| 1637 | OUTPUT PARAMETERS
|
---|
| 1638 | X - rows are filled with X-values
|
---|
| 1639 |
|
---|
| 1640 | NOTES
|
---|
| 1641 | 1. points are ordered by distance from the query point (first = closest)
|
---|
| 1642 | 2. if XY is larger than required to store result, only leading part will
|
---|
| 1643 | be overwritten; trailing part will be left unchanged. So if on input
|
---|
| 1644 | XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
---|
| 1645 | XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
---|
| 1646 | you want function to resize array according to result size, use
|
---|
| 1647 | function with same name and suffix 'I'.
|
---|
| 1648 |
|
---|
| 1649 | SEE ALSO
|
---|
| 1650 | * KDTreeQueryResultsXY() X- and Y-values
|
---|
| 1651 | * KDTreeQueryResultsTags() tag values
|
---|
| 1652 | * KDTreeQueryResultsDistances() distances
|
---|
| 1653 |
|
---|
| 1654 | -- ALGLIB --
|
---|
| 1655 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1656 | *************************************************************************/
|
---|
| 1657 | public static void kdtreequeryresultsx(kdtree kdt,
|
---|
| 1658 | ref double[,] x)
|
---|
| 1659 | {
|
---|
| 1660 | int i = 0;
|
---|
| 1661 | int k = 0;
|
---|
| 1662 | int i_ = 0;
|
---|
| 1663 | int i1_ = 0;
|
---|
| 1664 |
|
---|
| 1665 | if( kdt.kcur==0 )
|
---|
| 1666 | {
|
---|
| 1667 | return;
|
---|
| 1668 | }
|
---|
| 1669 | if( alglib.ap.rows(x)<kdt.kcur || alglib.ap.cols(x)<kdt.nx )
|
---|
| 1670 | {
|
---|
| 1671 | x = new double[kdt.kcur, kdt.nx];
|
---|
| 1672 | }
|
---|
| 1673 | k = kdt.kcur;
|
---|
| 1674 | for(i=0; i<=k-1; i++)
|
---|
| 1675 | {
|
---|
| 1676 | i1_ = (kdt.nx) - (0);
|
---|
| 1677 | for(i_=0; i_<=kdt.nx-1;i_++)
|
---|
| 1678 | {
|
---|
| 1679 | x[i,i_] = kdt.xy[kdt.idx[i],i_+i1_];
|
---|
| 1680 | }
|
---|
| 1681 | }
|
---|
| 1682 | }
|
---|
| 1683 |
|
---|
| 1684 |
|
---|
| 1685 | /*************************************************************************
|
---|
| 1686 | X- and Y-values from last query
|
---|
| 1687 |
|
---|
| 1688 | INPUT PARAMETERS
|
---|
| 1689 | KDT - KD-tree
|
---|
| 1690 | XY - possibly pre-allocated buffer. If XY is too small to store
|
---|
| 1691 | result, it is resized. If size(XY) is enough to store
|
---|
| 1692 | result, it is left unchanged.
|
---|
| 1693 |
|
---|
| 1694 | OUTPUT PARAMETERS
|
---|
| 1695 | XY - rows are filled with points: first NX columns with
|
---|
| 1696 | X-values, next NY columns - with Y-values.
|
---|
| 1697 |
|
---|
| 1698 | NOTES
|
---|
| 1699 | 1. points are ordered by distance from the query point (first = closest)
|
---|
| 1700 | 2. if XY is larger than required to store result, only leading part will
|
---|
| 1701 | be overwritten; trailing part will be left unchanged. So if on input
|
---|
| 1702 | XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
---|
| 1703 | XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
---|
| 1704 | you want function to resize array according to result size, use
|
---|
| 1705 | function with same name and suffix 'I'.
|
---|
| 1706 |
|
---|
| 1707 | SEE ALSO
|
---|
| 1708 | * KDTreeQueryResultsX() X-values
|
---|
| 1709 | * KDTreeQueryResultsTags() tag values
|
---|
| 1710 | * KDTreeQueryResultsDistances() distances
|
---|
| 1711 |
|
---|
| 1712 | -- ALGLIB --
|
---|
| 1713 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1714 | *************************************************************************/
|
---|
| 1715 | public static void kdtreequeryresultsxy(kdtree kdt,
|
---|
| 1716 | ref double[,] xy)
|
---|
| 1717 | {
|
---|
| 1718 | int i = 0;
|
---|
| 1719 | int k = 0;
|
---|
| 1720 | int i_ = 0;
|
---|
| 1721 | int i1_ = 0;
|
---|
| 1722 |
|
---|
| 1723 | if( kdt.kcur==0 )
|
---|
| 1724 | {
|
---|
| 1725 | return;
|
---|
| 1726 | }
|
---|
| 1727 | if( alglib.ap.rows(xy)<kdt.kcur || alglib.ap.cols(xy)<kdt.nx+kdt.ny )
|
---|
| 1728 | {
|
---|
| 1729 | xy = new double[kdt.kcur, kdt.nx+kdt.ny];
|
---|
| 1730 | }
|
---|
| 1731 | k = kdt.kcur;
|
---|
| 1732 | for(i=0; i<=k-1; i++)
|
---|
| 1733 | {
|
---|
| 1734 | i1_ = (kdt.nx) - (0);
|
---|
| 1735 | for(i_=0; i_<=kdt.nx+kdt.ny-1;i_++)
|
---|
| 1736 | {
|
---|
| 1737 | xy[i,i_] = kdt.xy[kdt.idx[i],i_+i1_];
|
---|
| 1738 | }
|
---|
| 1739 | }
|
---|
| 1740 | }
|
---|
| 1741 |
|
---|
| 1742 |
|
---|
| 1743 | /*************************************************************************
|
---|
| 1744 | Tags from last query
|
---|
| 1745 |
|
---|
| 1746 | INPUT PARAMETERS
|
---|
| 1747 | KDT - KD-tree
|
---|
| 1748 | Tags - possibly pre-allocated buffer. If X is too small to store
|
---|
| 1749 | result, it is resized. If size(X) is enough to store
|
---|
| 1750 | result, it is left unchanged.
|
---|
| 1751 |
|
---|
| 1752 | OUTPUT PARAMETERS
|
---|
| 1753 | Tags - filled with tags associated with points,
|
---|
| 1754 | or, when no tags were supplied, with zeros
|
---|
| 1755 |
|
---|
| 1756 | NOTES
|
---|
| 1757 | 1. points are ordered by distance from the query point (first = closest)
|
---|
| 1758 | 2. if XY is larger than required to store result, only leading part will
|
---|
| 1759 | be overwritten; trailing part will be left unchanged. So if on input
|
---|
| 1760 | XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
---|
| 1761 | XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
---|
| 1762 | you want function to resize array according to result size, use
|
---|
| 1763 | function with same name and suffix 'I'.
|
---|
| 1764 |
|
---|
| 1765 | SEE ALSO
|
---|
| 1766 | * KDTreeQueryResultsX() X-values
|
---|
| 1767 | * KDTreeQueryResultsXY() X- and Y-values
|
---|
| 1768 | * KDTreeQueryResultsDistances() distances
|
---|
| 1769 |
|
---|
| 1770 | -- ALGLIB --
|
---|
| 1771 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1772 | *************************************************************************/
|
---|
| 1773 | public static void kdtreequeryresultstags(kdtree kdt,
|
---|
| 1774 | ref int[] tags)
|
---|
| 1775 | {
|
---|
| 1776 | int i = 0;
|
---|
| 1777 | int k = 0;
|
---|
| 1778 |
|
---|
| 1779 | if( kdt.kcur==0 )
|
---|
| 1780 | {
|
---|
| 1781 | return;
|
---|
| 1782 | }
|
---|
| 1783 | if( alglib.ap.len(tags)<kdt.kcur )
|
---|
| 1784 | {
|
---|
| 1785 | tags = new int[kdt.kcur];
|
---|
| 1786 | }
|
---|
| 1787 | k = kdt.kcur;
|
---|
| 1788 | for(i=0; i<=k-1; i++)
|
---|
| 1789 | {
|
---|
| 1790 | tags[i] = kdt.tags[kdt.idx[i]];
|
---|
| 1791 | }
|
---|
| 1792 | }
|
---|
| 1793 |
|
---|
| 1794 |
|
---|
| 1795 | /*************************************************************************
|
---|
| 1796 | Distances from last query
|
---|
| 1797 |
|
---|
| 1798 | INPUT PARAMETERS
|
---|
| 1799 | KDT - KD-tree
|
---|
| 1800 | R - possibly pre-allocated buffer. If X is too small to store
|
---|
| 1801 | result, it is resized. If size(X) is enough to store
|
---|
| 1802 | result, it is left unchanged.
|
---|
| 1803 |
|
---|
| 1804 | OUTPUT PARAMETERS
|
---|
| 1805 | R - filled with distances (in corresponding norm)
|
---|
| 1806 |
|
---|
| 1807 | NOTES
|
---|
| 1808 | 1. points are ordered by distance from the query point (first = closest)
|
---|
| 1809 | 2. if XY is larger than required to store result, only leading part will
|
---|
| 1810 | be overwritten; trailing part will be left unchanged. So if on input
|
---|
| 1811 | XY = [[A,B],[C,D]], and result is [1,2], then on exit we will get
|
---|
| 1812 | XY = [[1,2],[C,D]]. This is done purposely to increase performance; if
|
---|
| 1813 | you want function to resize array according to result size, use
|
---|
| 1814 | function with same name and suffix 'I'.
|
---|
| 1815 |
|
---|
| 1816 | SEE ALSO
|
---|
| 1817 | * KDTreeQueryResultsX() X-values
|
---|
| 1818 | * KDTreeQueryResultsXY() X- and Y-values
|
---|
| 1819 | * KDTreeQueryResultsTags() tag values
|
---|
| 1820 |
|
---|
| 1821 | -- ALGLIB --
|
---|
| 1822 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1823 | *************************************************************************/
|
---|
| 1824 | public static void kdtreequeryresultsdistances(kdtree kdt,
|
---|
| 1825 | ref double[] r)
|
---|
| 1826 | {
|
---|
| 1827 | int i = 0;
|
---|
| 1828 | int k = 0;
|
---|
| 1829 |
|
---|
| 1830 | if( kdt.kcur==0 )
|
---|
| 1831 | {
|
---|
| 1832 | return;
|
---|
| 1833 | }
|
---|
| 1834 | if( alglib.ap.len(r)<kdt.kcur )
|
---|
| 1835 | {
|
---|
| 1836 | r = new double[kdt.kcur];
|
---|
| 1837 | }
|
---|
| 1838 | k = kdt.kcur;
|
---|
| 1839 |
|
---|
| 1840 | //
|
---|
| 1841 | // unload norms
|
---|
| 1842 | //
|
---|
| 1843 | // Abs() call is used to handle cases with negative norms
|
---|
| 1844 | // (generated during KFN requests)
|
---|
| 1845 | //
|
---|
| 1846 | if( kdt.normtype==0 )
|
---|
| 1847 | {
|
---|
| 1848 | for(i=0; i<=k-1; i++)
|
---|
| 1849 | {
|
---|
| 1850 | r[i] = Math.Abs(kdt.r[i]);
|
---|
| 1851 | }
|
---|
| 1852 | }
|
---|
| 1853 | if( kdt.normtype==1 )
|
---|
| 1854 | {
|
---|
| 1855 | for(i=0; i<=k-1; i++)
|
---|
| 1856 | {
|
---|
| 1857 | r[i] = Math.Abs(kdt.r[i]);
|
---|
| 1858 | }
|
---|
| 1859 | }
|
---|
| 1860 | if( kdt.normtype==2 )
|
---|
| 1861 | {
|
---|
| 1862 | for(i=0; i<=k-1; i++)
|
---|
| 1863 | {
|
---|
| 1864 | r[i] = Math.Sqrt(Math.Abs(kdt.r[i]));
|
---|
| 1865 | }
|
---|
| 1866 | }
|
---|
| 1867 | }
|
---|
| 1868 |
|
---|
| 1869 |
|
---|
| 1870 | /*************************************************************************
|
---|
| 1871 | X-values from last query; 'interactive' variant for languages like Python
|
---|
| 1872 | which support constructs like "X = KDTreeQueryResultsXI(KDT)" and
|
---|
| 1873 | interactive mode of interpreter.
|
---|
| 1874 |
|
---|
| 1875 | This function allocates new array on each call, so it is significantly
|
---|
| 1876 | slower than its 'non-interactive' counterpart, but it is more convenient
|
---|
| 1877 | when you call it from command line.
|
---|
| 1878 |
|
---|
| 1879 | -- ALGLIB --
|
---|
| 1880 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1881 | *************************************************************************/
|
---|
| 1882 | public static void kdtreequeryresultsxi(kdtree kdt,
|
---|
| 1883 | ref double[,] x)
|
---|
| 1884 | {
|
---|
| 1885 | x = new double[0,0];
|
---|
| 1886 |
|
---|
| 1887 | kdtreequeryresultsx(kdt, ref x);
|
---|
| 1888 | }
|
---|
| 1889 |
|
---|
| 1890 |
|
---|
| 1891 | /*************************************************************************
|
---|
| 1892 | XY-values from last query; 'interactive' variant for languages like Python
|
---|
| 1893 | which support constructs like "XY = KDTreeQueryResultsXYI(KDT)" and
|
---|
| 1894 | interactive mode of interpreter.
|
---|
| 1895 |
|
---|
| 1896 | This function allocates new array on each call, so it is significantly
|
---|
| 1897 | slower than its 'non-interactive' counterpart, but it is more convenient
|
---|
| 1898 | when you call it from command line.
|
---|
| 1899 |
|
---|
| 1900 | -- ALGLIB --
|
---|
| 1901 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1902 | *************************************************************************/
|
---|
| 1903 | public static void kdtreequeryresultsxyi(kdtree kdt,
|
---|
| 1904 | ref double[,] xy)
|
---|
| 1905 | {
|
---|
| 1906 | xy = new double[0,0];
|
---|
| 1907 |
|
---|
| 1908 | kdtreequeryresultsxy(kdt, ref xy);
|
---|
| 1909 | }
|
---|
| 1910 |
|
---|
| 1911 |
|
---|
| 1912 | /*************************************************************************
|
---|
| 1913 | Tags from last query; 'interactive' variant for languages like Python
|
---|
| 1914 | which support constructs like "Tags = KDTreeQueryResultsTagsI(KDT)" and
|
---|
| 1915 | interactive mode of interpreter.
|
---|
| 1916 |
|
---|
| 1917 | This function allocates new array on each call, so it is significantly
|
---|
| 1918 | slower than its 'non-interactive' counterpart, but it is more convenient
|
---|
| 1919 | when you call it from command line.
|
---|
| 1920 |
|
---|
| 1921 | -- ALGLIB --
|
---|
| 1922 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1923 | *************************************************************************/
|
---|
| 1924 | public static void kdtreequeryresultstagsi(kdtree kdt,
|
---|
| 1925 | ref int[] tags)
|
---|
| 1926 | {
|
---|
| 1927 | tags = new int[0];
|
---|
| 1928 |
|
---|
| 1929 | kdtreequeryresultstags(kdt, ref tags);
|
---|
| 1930 | }
|
---|
| 1931 |
|
---|
| 1932 |
|
---|
| 1933 | /*************************************************************************
|
---|
| 1934 | Distances from last query; 'interactive' variant for languages like Python
|
---|
| 1935 | which support constructs like "R = KDTreeQueryResultsDistancesI(KDT)"
|
---|
| 1936 | and interactive mode of interpreter.
|
---|
| 1937 |
|
---|
| 1938 | This function allocates new array on each call, so it is significantly
|
---|
| 1939 | slower than its 'non-interactive' counterpart, but it is more convenient
|
---|
| 1940 | when you call it from command line.
|
---|
| 1941 |
|
---|
| 1942 | -- ALGLIB --
|
---|
| 1943 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 1944 | *************************************************************************/
|
---|
| 1945 | public static void kdtreequeryresultsdistancesi(kdtree kdt,
|
---|
| 1946 | ref double[] r)
|
---|
| 1947 | {
|
---|
| 1948 | r = new double[0];
|
---|
| 1949 |
|
---|
| 1950 | kdtreequeryresultsdistances(kdt, ref r);
|
---|
| 1951 | }
|
---|
| 1952 |
|
---|
| 1953 |
|
---|
| 1954 | /*************************************************************************
|
---|
| 1955 | Serializer: allocation
|
---|
| 1956 |
|
---|
| 1957 | -- ALGLIB --
|
---|
| 1958 | Copyright 14.03.2011 by Bochkanov Sergey
|
---|
| 1959 | *************************************************************************/
|
---|
| 1960 | public static void kdtreealloc(alglib.serializer s,
|
---|
| 1961 | kdtree tree)
|
---|
| 1962 | {
|
---|
| 1963 |
|
---|
| 1964 | //
|
---|
| 1965 | // Header
|
---|
| 1966 | //
|
---|
| 1967 | s.alloc_entry();
|
---|
| 1968 | s.alloc_entry();
|
---|
| 1969 |
|
---|
| 1970 | //
|
---|
| 1971 | // Data
|
---|
| 1972 | //
|
---|
| 1973 | s.alloc_entry();
|
---|
| 1974 | s.alloc_entry();
|
---|
| 1975 | s.alloc_entry();
|
---|
| 1976 | s.alloc_entry();
|
---|
| 1977 | apserv.allocrealmatrix(s, tree.xy, -1, -1);
|
---|
| 1978 | apserv.allocintegerarray(s, tree.tags, -1);
|
---|
| 1979 | apserv.allocrealarray(s, tree.boxmin, -1);
|
---|
| 1980 | apserv.allocrealarray(s, tree.boxmax, -1);
|
---|
| 1981 | apserv.allocintegerarray(s, tree.nodes, -1);
|
---|
| 1982 | apserv.allocrealarray(s, tree.splits, -1);
|
---|
| 1983 | }
|
---|
| 1984 |
|
---|
| 1985 |
|
---|
| 1986 | /*************************************************************************
|
---|
| 1987 | Serializer: serialization
|
---|
| 1988 |
|
---|
| 1989 | -- ALGLIB --
|
---|
| 1990 | Copyright 14.03.2011 by Bochkanov Sergey
|
---|
| 1991 | *************************************************************************/
|
---|
| 1992 | public static void kdtreeserialize(alglib.serializer s,
|
---|
| 1993 | kdtree tree)
|
---|
| 1994 | {
|
---|
| 1995 |
|
---|
| 1996 | //
|
---|
| 1997 | // Header
|
---|
| 1998 | //
|
---|
| 1999 | s.serialize_int(scodes.getkdtreeserializationcode());
|
---|
| 2000 | s.serialize_int(kdtreefirstversion);
|
---|
| 2001 |
|
---|
| 2002 | //
|
---|
| 2003 | // Data
|
---|
| 2004 | //
|
---|
| 2005 | s.serialize_int(tree.n);
|
---|
| 2006 | s.serialize_int(tree.nx);
|
---|
| 2007 | s.serialize_int(tree.ny);
|
---|
| 2008 | s.serialize_int(tree.normtype);
|
---|
| 2009 | apserv.serializerealmatrix(s, tree.xy, -1, -1);
|
---|
| 2010 | apserv.serializeintegerarray(s, tree.tags, -1);
|
---|
| 2011 | apserv.serializerealarray(s, tree.boxmin, -1);
|
---|
| 2012 | apserv.serializerealarray(s, tree.boxmax, -1);
|
---|
| 2013 | apserv.serializeintegerarray(s, tree.nodes, -1);
|
---|
| 2014 | apserv.serializerealarray(s, tree.splits, -1);
|
---|
| 2015 | }
|
---|
| 2016 |
|
---|
| 2017 |
|
---|
| 2018 | /*************************************************************************
|
---|
| 2019 | Serializer: unserialization
|
---|
| 2020 |
|
---|
| 2021 | -- ALGLIB --
|
---|
| 2022 | Copyright 14.03.2011 by Bochkanov Sergey
|
---|
| 2023 | *************************************************************************/
|
---|
| 2024 | public static void kdtreeunserialize(alglib.serializer s,
|
---|
| 2025 | kdtree tree)
|
---|
| 2026 | {
|
---|
| 2027 | int i0 = 0;
|
---|
| 2028 | int i1 = 0;
|
---|
| 2029 |
|
---|
| 2030 |
|
---|
| 2031 | //
|
---|
| 2032 | // check correctness of header
|
---|
| 2033 | //
|
---|
| 2034 | i0 = s.unserialize_int();
|
---|
| 2035 | alglib.ap.assert(i0==scodes.getkdtreeserializationcode(), "KDTreeUnserialize: stream header corrupted");
|
---|
| 2036 | i1 = s.unserialize_int();
|
---|
| 2037 | alglib.ap.assert(i1==kdtreefirstversion, "KDTreeUnserialize: stream header corrupted");
|
---|
| 2038 |
|
---|
| 2039 | //
|
---|
| 2040 | // Unserialize data
|
---|
| 2041 | //
|
---|
| 2042 | tree.n = s.unserialize_int();
|
---|
| 2043 | tree.nx = s.unserialize_int();
|
---|
| 2044 | tree.ny = s.unserialize_int();
|
---|
| 2045 | tree.normtype = s.unserialize_int();
|
---|
| 2046 | apserv.unserializerealmatrix(s, ref tree.xy);
|
---|
| 2047 | apserv.unserializeintegerarray(s, ref tree.tags);
|
---|
| 2048 | apserv.unserializerealarray(s, ref tree.boxmin);
|
---|
| 2049 | apserv.unserializerealarray(s, ref tree.boxmax);
|
---|
| 2050 | apserv.unserializeintegerarray(s, ref tree.nodes);
|
---|
| 2051 | apserv.unserializerealarray(s, ref tree.splits);
|
---|
| 2052 | kdtreealloctemporaries(tree, tree.n, tree.nx, tree.ny);
|
---|
| 2053 | }
|
---|
| 2054 |
|
---|
| 2055 |
|
---|
| 2056 | /*************************************************************************
|
---|
| 2057 | Rearranges nodes [I1,I2) using partition in D-th dimension with S as threshold.
|
---|
| 2058 | Returns split position I3: [I1,I3) and [I3,I2) are created as result.
|
---|
| 2059 |
|
---|
| 2060 | This subroutine doesn't create tree structures, just rearranges nodes.
|
---|
| 2061 | *************************************************************************/
|
---|
| 2062 | private static void kdtreesplit(kdtree kdt,
|
---|
| 2063 | int i1,
|
---|
| 2064 | int i2,
|
---|
| 2065 | int d,
|
---|
| 2066 | double s,
|
---|
| 2067 | ref int i3)
|
---|
| 2068 | {
|
---|
| 2069 | int i = 0;
|
---|
| 2070 | int j = 0;
|
---|
| 2071 | int ileft = 0;
|
---|
| 2072 | int iright = 0;
|
---|
| 2073 | double v = 0;
|
---|
| 2074 |
|
---|
| 2075 | i3 = 0;
|
---|
| 2076 |
|
---|
| 2077 | alglib.ap.assert(kdt.n>0, "KDTreeSplit: internal error");
|
---|
| 2078 |
|
---|
| 2079 | //
|
---|
| 2080 | // split XY/Tags in two parts:
|
---|
| 2081 | // * [ILeft,IRight] is non-processed part of XY/Tags
|
---|
| 2082 | //
|
---|
| 2083 | // After cycle is done, we have Ileft=IRight. We deal with
|
---|
| 2084 | // this element separately.
|
---|
| 2085 | //
|
---|
| 2086 | // After this, [I1,ILeft) contains left part, and [ILeft,I2)
|
---|
| 2087 | // contains right part.
|
---|
| 2088 | //
|
---|
| 2089 | ileft = i1;
|
---|
| 2090 | iright = i2-1;
|
---|
| 2091 | while( ileft<iright )
|
---|
| 2092 | {
|
---|
| 2093 | if( (double)(kdt.xy[ileft,d])<=(double)(s) )
|
---|
| 2094 | {
|
---|
| 2095 |
|
---|
| 2096 | //
|
---|
| 2097 | // XY[ILeft] is on its place.
|
---|
| 2098 | // Advance ILeft.
|
---|
| 2099 | //
|
---|
| 2100 | ileft = ileft+1;
|
---|
| 2101 | }
|
---|
| 2102 | else
|
---|
| 2103 | {
|
---|
| 2104 |
|
---|
| 2105 | //
|
---|
| 2106 | // XY[ILeft,..] must be at IRight.
|
---|
| 2107 | // Swap and advance IRight.
|
---|
| 2108 | //
|
---|
| 2109 | for(i=0; i<=2*kdt.nx+kdt.ny-1; i++)
|
---|
| 2110 | {
|
---|
| 2111 | v = kdt.xy[ileft,i];
|
---|
| 2112 | kdt.xy[ileft,i] = kdt.xy[iright,i];
|
---|
| 2113 | kdt.xy[iright,i] = v;
|
---|
| 2114 | }
|
---|
| 2115 | j = kdt.tags[ileft];
|
---|
| 2116 | kdt.tags[ileft] = kdt.tags[iright];
|
---|
| 2117 | kdt.tags[iright] = j;
|
---|
| 2118 | iright = iright-1;
|
---|
| 2119 | }
|
---|
| 2120 | }
|
---|
| 2121 | if( (double)(kdt.xy[ileft,d])<=(double)(s) )
|
---|
| 2122 | {
|
---|
| 2123 | ileft = ileft+1;
|
---|
| 2124 | }
|
---|
| 2125 | else
|
---|
| 2126 | {
|
---|
| 2127 | iright = iright-1;
|
---|
| 2128 | }
|
---|
| 2129 | i3 = ileft;
|
---|
| 2130 | }
|
---|
| 2131 |
|
---|
| 2132 |
|
---|
| 2133 | /*************************************************************************
|
---|
| 2134 | Recursive kd-tree generation subroutine.
|
---|
| 2135 |
|
---|
| 2136 | PARAMETERS
|
---|
| 2137 | KDT tree
|
---|
| 2138 | NodesOffs unused part of Nodes[] which must be filled by tree
|
---|
| 2139 | SplitsOffs unused part of Splits[]
|
---|
| 2140 | I1, I2 points from [I1,I2) are processed
|
---|
| 2141 |
|
---|
| 2142 | NodesOffs[] and SplitsOffs[] must be large enough.
|
---|
| 2143 |
|
---|
| 2144 | -- ALGLIB --
|
---|
| 2145 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 2146 | *************************************************************************/
|
---|
| 2147 | private static void kdtreegeneratetreerec(kdtree kdt,
|
---|
| 2148 | ref int nodesoffs,
|
---|
| 2149 | ref int splitsoffs,
|
---|
| 2150 | int i1,
|
---|
| 2151 | int i2,
|
---|
| 2152 | int maxleafsize)
|
---|
| 2153 | {
|
---|
| 2154 | int n = 0;
|
---|
| 2155 | int nx = 0;
|
---|
| 2156 | int ny = 0;
|
---|
| 2157 | int i = 0;
|
---|
| 2158 | int j = 0;
|
---|
| 2159 | int oldoffs = 0;
|
---|
| 2160 | int i3 = 0;
|
---|
| 2161 | int cntless = 0;
|
---|
| 2162 | int cntgreater = 0;
|
---|
| 2163 | double minv = 0;
|
---|
| 2164 | double maxv = 0;
|
---|
| 2165 | int minidx = 0;
|
---|
| 2166 | int maxidx = 0;
|
---|
| 2167 | int d = 0;
|
---|
| 2168 | double ds = 0;
|
---|
| 2169 | double s = 0;
|
---|
| 2170 | double v = 0;
|
---|
| 2171 | int i_ = 0;
|
---|
| 2172 | int i1_ = 0;
|
---|
| 2173 |
|
---|
| 2174 | alglib.ap.assert(kdt.n>0, "KDTreeGenerateTreeRec: internal error");
|
---|
| 2175 | alglib.ap.assert(i2>i1, "KDTreeGenerateTreeRec: internal error");
|
---|
| 2176 |
|
---|
| 2177 | //
|
---|
| 2178 | // Generate leaf if needed
|
---|
| 2179 | //
|
---|
| 2180 | if( i2-i1<=maxleafsize )
|
---|
| 2181 | {
|
---|
| 2182 | kdt.nodes[nodesoffs+0] = i2-i1;
|
---|
| 2183 | kdt.nodes[nodesoffs+1] = i1;
|
---|
| 2184 | nodesoffs = nodesoffs+2;
|
---|
| 2185 | return;
|
---|
| 2186 | }
|
---|
| 2187 |
|
---|
| 2188 | //
|
---|
| 2189 | // Load values for easier access
|
---|
| 2190 | //
|
---|
| 2191 | nx = kdt.nx;
|
---|
| 2192 | ny = kdt.ny;
|
---|
| 2193 |
|
---|
| 2194 | //
|
---|
| 2195 | // select dimension to split:
|
---|
| 2196 | // * D is a dimension number
|
---|
| 2197 | //
|
---|
| 2198 | d = 0;
|
---|
| 2199 | ds = kdt.curboxmax[0]-kdt.curboxmin[0];
|
---|
| 2200 | for(i=1; i<=nx-1; i++)
|
---|
| 2201 | {
|
---|
| 2202 | v = kdt.curboxmax[i]-kdt.curboxmin[i];
|
---|
| 2203 | if( (double)(v)>(double)(ds) )
|
---|
| 2204 | {
|
---|
| 2205 | ds = v;
|
---|
| 2206 | d = i;
|
---|
| 2207 | }
|
---|
| 2208 | }
|
---|
| 2209 |
|
---|
| 2210 | //
|
---|
| 2211 | // Select split position S using sliding midpoint rule,
|
---|
| 2212 | // rearrange points into [I1,I3) and [I3,I2)
|
---|
| 2213 | //
|
---|
| 2214 | s = kdt.curboxmin[d]+0.5*ds;
|
---|
| 2215 | i1_ = (i1) - (0);
|
---|
| 2216 | for(i_=0; i_<=i2-i1-1;i_++)
|
---|
| 2217 | {
|
---|
| 2218 | kdt.buf[i_] = kdt.xy[i_+i1_,d];
|
---|
| 2219 | }
|
---|
| 2220 | n = i2-i1;
|
---|
| 2221 | cntless = 0;
|
---|
| 2222 | cntgreater = 0;
|
---|
| 2223 | minv = kdt.buf[0];
|
---|
| 2224 | maxv = kdt.buf[0];
|
---|
| 2225 | minidx = i1;
|
---|
| 2226 | maxidx = i1;
|
---|
| 2227 | for(i=0; i<=n-1; i++)
|
---|
| 2228 | {
|
---|
| 2229 | v = kdt.buf[i];
|
---|
| 2230 | if( (double)(v)<(double)(minv) )
|
---|
| 2231 | {
|
---|
| 2232 | minv = v;
|
---|
| 2233 | minidx = i1+i;
|
---|
| 2234 | }
|
---|
| 2235 | if( (double)(v)>(double)(maxv) )
|
---|
| 2236 | {
|
---|
| 2237 | maxv = v;
|
---|
| 2238 | maxidx = i1+i;
|
---|
| 2239 | }
|
---|
| 2240 | if( (double)(v)<(double)(s) )
|
---|
| 2241 | {
|
---|
| 2242 | cntless = cntless+1;
|
---|
| 2243 | }
|
---|
| 2244 | if( (double)(v)>(double)(s) )
|
---|
| 2245 | {
|
---|
| 2246 | cntgreater = cntgreater+1;
|
---|
| 2247 | }
|
---|
| 2248 | }
|
---|
| 2249 | if( cntless>0 && cntgreater>0 )
|
---|
| 2250 | {
|
---|
| 2251 |
|
---|
| 2252 | //
|
---|
| 2253 | // normal midpoint split
|
---|
| 2254 | //
|
---|
| 2255 | kdtreesplit(kdt, i1, i2, d, s, ref i3);
|
---|
| 2256 | }
|
---|
| 2257 | else
|
---|
| 2258 | {
|
---|
| 2259 |
|
---|
| 2260 | //
|
---|
| 2261 | // sliding midpoint
|
---|
| 2262 | //
|
---|
| 2263 | if( cntless==0 )
|
---|
| 2264 | {
|
---|
| 2265 |
|
---|
| 2266 | //
|
---|
| 2267 | // 1. move split to MinV,
|
---|
| 2268 | // 2. place one point to the left bin (move to I1),
|
---|
| 2269 | // others - to the right bin
|
---|
| 2270 | //
|
---|
| 2271 | s = minv;
|
---|
| 2272 | if( minidx!=i1 )
|
---|
| 2273 | {
|
---|
| 2274 | for(i=0; i<=2*kdt.nx+kdt.ny-1; i++)
|
---|
| 2275 | {
|
---|
| 2276 | v = kdt.xy[minidx,i];
|
---|
| 2277 | kdt.xy[minidx,i] = kdt.xy[i1,i];
|
---|
| 2278 | kdt.xy[i1,i] = v;
|
---|
| 2279 | }
|
---|
| 2280 | j = kdt.tags[minidx];
|
---|
| 2281 | kdt.tags[minidx] = kdt.tags[i1];
|
---|
| 2282 | kdt.tags[i1] = j;
|
---|
| 2283 | }
|
---|
| 2284 | i3 = i1+1;
|
---|
| 2285 | }
|
---|
| 2286 | else
|
---|
| 2287 | {
|
---|
| 2288 |
|
---|
| 2289 | //
|
---|
| 2290 | // 1. move split to MaxV,
|
---|
| 2291 | // 2. place one point to the right bin (move to I2-1),
|
---|
| 2292 | // others - to the left bin
|
---|
| 2293 | //
|
---|
| 2294 | s = maxv;
|
---|
| 2295 | if( maxidx!=i2-1 )
|
---|
| 2296 | {
|
---|
| 2297 | for(i=0; i<=2*kdt.nx+kdt.ny-1; i++)
|
---|
| 2298 | {
|
---|
| 2299 | v = kdt.xy[maxidx,i];
|
---|
| 2300 | kdt.xy[maxidx,i] = kdt.xy[i2-1,i];
|
---|
| 2301 | kdt.xy[i2-1,i] = v;
|
---|
| 2302 | }
|
---|
| 2303 | j = kdt.tags[maxidx];
|
---|
| 2304 | kdt.tags[maxidx] = kdt.tags[i2-1];
|
---|
| 2305 | kdt.tags[i2-1] = j;
|
---|
| 2306 | }
|
---|
| 2307 | i3 = i2-1;
|
---|
| 2308 | }
|
---|
| 2309 | }
|
---|
| 2310 |
|
---|
| 2311 | //
|
---|
| 2312 | // Generate 'split' node
|
---|
| 2313 | //
|
---|
| 2314 | kdt.nodes[nodesoffs+0] = 0;
|
---|
| 2315 | kdt.nodes[nodesoffs+1] = d;
|
---|
| 2316 | kdt.nodes[nodesoffs+2] = splitsoffs;
|
---|
| 2317 | kdt.splits[splitsoffs+0] = s;
|
---|
| 2318 | oldoffs = nodesoffs;
|
---|
| 2319 | nodesoffs = nodesoffs+splitnodesize;
|
---|
| 2320 | splitsoffs = splitsoffs+1;
|
---|
| 2321 |
|
---|
| 2322 | //
|
---|
| 2323 | // Recirsive generation:
|
---|
| 2324 | // * update CurBox
|
---|
| 2325 | // * call subroutine
|
---|
| 2326 | // * restore CurBox
|
---|
| 2327 | //
|
---|
| 2328 | kdt.nodes[oldoffs+3] = nodesoffs;
|
---|
| 2329 | v = kdt.curboxmax[d];
|
---|
| 2330 | kdt.curboxmax[d] = s;
|
---|
| 2331 | kdtreegeneratetreerec(kdt, ref nodesoffs, ref splitsoffs, i1, i3, maxleafsize);
|
---|
| 2332 | kdt.curboxmax[d] = v;
|
---|
| 2333 | kdt.nodes[oldoffs+4] = nodesoffs;
|
---|
| 2334 | v = kdt.curboxmin[d];
|
---|
| 2335 | kdt.curboxmin[d] = s;
|
---|
| 2336 | kdtreegeneratetreerec(kdt, ref nodesoffs, ref splitsoffs, i3, i2, maxleafsize);
|
---|
| 2337 | kdt.curboxmin[d] = v;
|
---|
| 2338 | }
|
---|
| 2339 |
|
---|
| 2340 |
|
---|
| 2341 | /*************************************************************************
|
---|
| 2342 | Recursive subroutine for NN queries.
|
---|
| 2343 |
|
---|
| 2344 | -- ALGLIB --
|
---|
| 2345 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 2346 | *************************************************************************/
|
---|
| 2347 | private static void kdtreequerynnrec(kdtree kdt,
|
---|
| 2348 | int offs)
|
---|
| 2349 | {
|
---|
| 2350 | double ptdist = 0;
|
---|
| 2351 | int i = 0;
|
---|
| 2352 | int j = 0;
|
---|
| 2353 | int nx = 0;
|
---|
| 2354 | int i1 = 0;
|
---|
| 2355 | int i2 = 0;
|
---|
| 2356 | int d = 0;
|
---|
| 2357 | double s = 0;
|
---|
| 2358 | double v = 0;
|
---|
| 2359 | double t1 = 0;
|
---|
| 2360 | int childbestoffs = 0;
|
---|
| 2361 | int childworstoffs = 0;
|
---|
| 2362 | int childoffs = 0;
|
---|
| 2363 | double prevdist = 0;
|
---|
| 2364 | bool todive = new bool();
|
---|
| 2365 | bool bestisleft = new bool();
|
---|
| 2366 | bool updatemin = new bool();
|
---|
| 2367 |
|
---|
| 2368 | alglib.ap.assert(kdt.n>0, "KDTreeQueryNNRec: internal error");
|
---|
| 2369 |
|
---|
| 2370 | //
|
---|
| 2371 | // Leaf node.
|
---|
| 2372 | // Process points.
|
---|
| 2373 | //
|
---|
| 2374 | if( kdt.nodes[offs]>0 )
|
---|
| 2375 | {
|
---|
| 2376 | i1 = kdt.nodes[offs+1];
|
---|
| 2377 | i2 = i1+kdt.nodes[offs];
|
---|
| 2378 | for(i=i1; i<=i2-1; i++)
|
---|
| 2379 | {
|
---|
| 2380 |
|
---|
| 2381 | //
|
---|
| 2382 | // Calculate distance
|
---|
| 2383 | //
|
---|
| 2384 | ptdist = 0;
|
---|
| 2385 | nx = kdt.nx;
|
---|
| 2386 | if( kdt.normtype==0 )
|
---|
| 2387 | {
|
---|
| 2388 | for(j=0; j<=nx-1; j++)
|
---|
| 2389 | {
|
---|
| 2390 | ptdist = Math.Max(ptdist, Math.Abs(kdt.xy[i,j]-kdt.x[j]));
|
---|
| 2391 | }
|
---|
| 2392 | }
|
---|
| 2393 | if( kdt.normtype==1 )
|
---|
| 2394 | {
|
---|
| 2395 | for(j=0; j<=nx-1; j++)
|
---|
| 2396 | {
|
---|
| 2397 | ptdist = ptdist+Math.Abs(kdt.xy[i,j]-kdt.x[j]);
|
---|
| 2398 | }
|
---|
| 2399 | }
|
---|
| 2400 | if( kdt.normtype==2 )
|
---|
| 2401 | {
|
---|
| 2402 | for(j=0; j<=nx-1; j++)
|
---|
| 2403 | {
|
---|
| 2404 | ptdist = ptdist+math.sqr(kdt.xy[i,j]-kdt.x[j]);
|
---|
| 2405 | }
|
---|
| 2406 | }
|
---|
| 2407 |
|
---|
| 2408 | //
|
---|
| 2409 | // Skip points with zero distance if self-matches are turned off
|
---|
| 2410 | //
|
---|
| 2411 | if( (double)(ptdist)==(double)(0) && !kdt.selfmatch )
|
---|
| 2412 | {
|
---|
| 2413 | continue;
|
---|
| 2414 | }
|
---|
| 2415 |
|
---|
| 2416 | //
|
---|
| 2417 | // We CAN'T process point if R-criterion isn't satisfied,
|
---|
| 2418 | // i.e. (RNeeded<>0) AND (PtDist>R).
|
---|
| 2419 | //
|
---|
| 2420 | if( (double)(kdt.rneeded)==(double)(0) || (double)(ptdist)<=(double)(kdt.rneeded) )
|
---|
| 2421 | {
|
---|
| 2422 |
|
---|
| 2423 | //
|
---|
| 2424 | // R-criterion is satisfied, we must either:
|
---|
| 2425 | // * replace worst point, if (KNeeded<>0) AND (KCur=KNeeded)
|
---|
| 2426 | // (or skip, if worst point is better)
|
---|
| 2427 | // * add point without replacement otherwise
|
---|
| 2428 | //
|
---|
| 2429 | if( kdt.kcur<kdt.kneeded || kdt.kneeded==0 )
|
---|
| 2430 | {
|
---|
| 2431 |
|
---|
| 2432 | //
|
---|
| 2433 | // add current point to heap without replacement
|
---|
| 2434 | //
|
---|
| 2435 | tsort.tagheappushi(ref kdt.r, ref kdt.idx, ref kdt.kcur, ptdist, i);
|
---|
| 2436 | }
|
---|
| 2437 | else
|
---|
| 2438 | {
|
---|
| 2439 |
|
---|
| 2440 | //
|
---|
| 2441 | // New points are added or not, depending on their distance.
|
---|
| 2442 | // If added, they replace element at the top of the heap
|
---|
| 2443 | //
|
---|
| 2444 | if( (double)(ptdist)<(double)(kdt.r[0]) )
|
---|
| 2445 | {
|
---|
| 2446 | if( kdt.kneeded==1 )
|
---|
| 2447 | {
|
---|
| 2448 | kdt.idx[0] = i;
|
---|
| 2449 | kdt.r[0] = ptdist;
|
---|
| 2450 | }
|
---|
| 2451 | else
|
---|
| 2452 | {
|
---|
| 2453 | tsort.tagheapreplacetopi(ref kdt.r, ref kdt.idx, kdt.kneeded, ptdist, i);
|
---|
| 2454 | }
|
---|
| 2455 | }
|
---|
| 2456 | }
|
---|
| 2457 | }
|
---|
| 2458 | }
|
---|
| 2459 | return;
|
---|
| 2460 | }
|
---|
| 2461 |
|
---|
| 2462 | //
|
---|
| 2463 | // Simple split
|
---|
| 2464 | //
|
---|
| 2465 | if( kdt.nodes[offs]==0 )
|
---|
| 2466 | {
|
---|
| 2467 |
|
---|
| 2468 | //
|
---|
| 2469 | // Load:
|
---|
| 2470 | // * D dimension to split
|
---|
| 2471 | // * S split position
|
---|
| 2472 | //
|
---|
| 2473 | d = kdt.nodes[offs+1];
|
---|
| 2474 | s = kdt.splits[kdt.nodes[offs+2]];
|
---|
| 2475 |
|
---|
| 2476 | //
|
---|
| 2477 | // Calculate:
|
---|
| 2478 | // * ChildBestOffs child box with best chances
|
---|
| 2479 | // * ChildWorstOffs child box with worst chances
|
---|
| 2480 | //
|
---|
| 2481 | if( (double)(kdt.x[d])<=(double)(s) )
|
---|
| 2482 | {
|
---|
| 2483 | childbestoffs = kdt.nodes[offs+3];
|
---|
| 2484 | childworstoffs = kdt.nodes[offs+4];
|
---|
| 2485 | bestisleft = true;
|
---|
| 2486 | }
|
---|
| 2487 | else
|
---|
| 2488 | {
|
---|
| 2489 | childbestoffs = kdt.nodes[offs+4];
|
---|
| 2490 | childworstoffs = kdt.nodes[offs+3];
|
---|
| 2491 | bestisleft = false;
|
---|
| 2492 | }
|
---|
| 2493 |
|
---|
| 2494 | //
|
---|
| 2495 | // Navigate through childs
|
---|
| 2496 | //
|
---|
| 2497 | for(i=0; i<=1; i++)
|
---|
| 2498 | {
|
---|
| 2499 |
|
---|
| 2500 | //
|
---|
| 2501 | // Select child to process:
|
---|
| 2502 | // * ChildOffs current child offset in Nodes[]
|
---|
| 2503 | // * UpdateMin whether minimum or maximum value
|
---|
| 2504 | // of bounding box is changed on update
|
---|
| 2505 | //
|
---|
| 2506 | if( i==0 )
|
---|
| 2507 | {
|
---|
| 2508 | childoffs = childbestoffs;
|
---|
| 2509 | updatemin = !bestisleft;
|
---|
| 2510 | }
|
---|
| 2511 | else
|
---|
| 2512 | {
|
---|
| 2513 | updatemin = bestisleft;
|
---|
| 2514 | childoffs = childworstoffs;
|
---|
| 2515 | }
|
---|
| 2516 |
|
---|
| 2517 | //
|
---|
| 2518 | // Update bounding box and current distance
|
---|
| 2519 | //
|
---|
| 2520 | if( updatemin )
|
---|
| 2521 | {
|
---|
| 2522 | prevdist = kdt.curdist;
|
---|
| 2523 | t1 = kdt.x[d];
|
---|
| 2524 | v = kdt.curboxmin[d];
|
---|
| 2525 | if( (double)(t1)<=(double)(s) )
|
---|
| 2526 | {
|
---|
| 2527 | if( kdt.normtype==0 )
|
---|
| 2528 | {
|
---|
| 2529 | kdt.curdist = Math.Max(kdt.curdist, s-t1);
|
---|
| 2530 | }
|
---|
| 2531 | if( kdt.normtype==1 )
|
---|
| 2532 | {
|
---|
| 2533 | kdt.curdist = kdt.curdist-Math.Max(v-t1, 0)+s-t1;
|
---|
| 2534 | }
|
---|
| 2535 | if( kdt.normtype==2 )
|
---|
| 2536 | {
|
---|
| 2537 | kdt.curdist = kdt.curdist-math.sqr(Math.Max(v-t1, 0))+math.sqr(s-t1);
|
---|
| 2538 | }
|
---|
| 2539 | }
|
---|
| 2540 | kdt.curboxmin[d] = s;
|
---|
| 2541 | }
|
---|
| 2542 | else
|
---|
| 2543 | {
|
---|
| 2544 | prevdist = kdt.curdist;
|
---|
| 2545 | t1 = kdt.x[d];
|
---|
| 2546 | v = kdt.curboxmax[d];
|
---|
| 2547 | if( (double)(t1)>=(double)(s) )
|
---|
| 2548 | {
|
---|
| 2549 | if( kdt.normtype==0 )
|
---|
| 2550 | {
|
---|
| 2551 | kdt.curdist = Math.Max(kdt.curdist, t1-s);
|
---|
| 2552 | }
|
---|
| 2553 | if( kdt.normtype==1 )
|
---|
| 2554 | {
|
---|
| 2555 | kdt.curdist = kdt.curdist-Math.Max(t1-v, 0)+t1-s;
|
---|
| 2556 | }
|
---|
| 2557 | if( kdt.normtype==2 )
|
---|
| 2558 | {
|
---|
| 2559 | kdt.curdist = kdt.curdist-math.sqr(Math.Max(t1-v, 0))+math.sqr(t1-s);
|
---|
| 2560 | }
|
---|
| 2561 | }
|
---|
| 2562 | kdt.curboxmax[d] = s;
|
---|
| 2563 | }
|
---|
| 2564 |
|
---|
| 2565 | //
|
---|
| 2566 | // Decide: to dive into cell or not to dive
|
---|
| 2567 | //
|
---|
| 2568 | if( (double)(kdt.rneeded)!=(double)(0) && (double)(kdt.curdist)>(double)(kdt.rneeded) )
|
---|
| 2569 | {
|
---|
| 2570 | todive = false;
|
---|
| 2571 | }
|
---|
| 2572 | else
|
---|
| 2573 | {
|
---|
| 2574 | if( kdt.kcur<kdt.kneeded || kdt.kneeded==0 )
|
---|
| 2575 | {
|
---|
| 2576 |
|
---|
| 2577 | //
|
---|
| 2578 | // KCur<KNeeded (i.e. not all points are found)
|
---|
| 2579 | //
|
---|
| 2580 | todive = true;
|
---|
| 2581 | }
|
---|
| 2582 | else
|
---|
| 2583 | {
|
---|
| 2584 |
|
---|
| 2585 | //
|
---|
| 2586 | // KCur=KNeeded, decide to dive or not to dive
|
---|
| 2587 | // using point position relative to bounding box.
|
---|
| 2588 | //
|
---|
| 2589 | todive = (double)(kdt.curdist)<=(double)(kdt.r[0]*kdt.approxf);
|
---|
| 2590 | }
|
---|
| 2591 | }
|
---|
| 2592 | if( todive )
|
---|
| 2593 | {
|
---|
| 2594 | kdtreequerynnrec(kdt, childoffs);
|
---|
| 2595 | }
|
---|
| 2596 |
|
---|
| 2597 | //
|
---|
| 2598 | // Restore bounding box and distance
|
---|
| 2599 | //
|
---|
| 2600 | if( updatemin )
|
---|
| 2601 | {
|
---|
| 2602 | kdt.curboxmin[d] = v;
|
---|
| 2603 | }
|
---|
| 2604 | else
|
---|
| 2605 | {
|
---|
| 2606 | kdt.curboxmax[d] = v;
|
---|
| 2607 | }
|
---|
| 2608 | kdt.curdist = prevdist;
|
---|
| 2609 | }
|
---|
| 2610 | return;
|
---|
| 2611 | }
|
---|
| 2612 | }
|
---|
| 2613 |
|
---|
| 2614 |
|
---|
| 2615 | /*************************************************************************
|
---|
| 2616 | Copies X[] to KDT.X[]
|
---|
| 2617 | Loads distance from X[] to bounding box.
|
---|
| 2618 | Initializes CurBox[].
|
---|
| 2619 |
|
---|
| 2620 | -- ALGLIB --
|
---|
| 2621 | Copyright 28.02.2010 by Bochkanov Sergey
|
---|
| 2622 | *************************************************************************/
|
---|
| 2623 | private static void kdtreeinitbox(kdtree kdt,
|
---|
| 2624 | double[] x)
|
---|
| 2625 | {
|
---|
| 2626 | int i = 0;
|
---|
| 2627 | double vx = 0;
|
---|
| 2628 | double vmin = 0;
|
---|
| 2629 | double vmax = 0;
|
---|
| 2630 |
|
---|
| 2631 | alglib.ap.assert(kdt.n>0, "KDTreeInitBox: internal error");
|
---|
| 2632 |
|
---|
| 2633 | //
|
---|
| 2634 | // calculate distance from point to current bounding box
|
---|
| 2635 | //
|
---|
| 2636 | kdt.curdist = 0;
|
---|
| 2637 | if( kdt.normtype==0 )
|
---|
| 2638 | {
|
---|
| 2639 | for(i=0; i<=kdt.nx-1; i++)
|
---|
| 2640 | {
|
---|
| 2641 | vx = x[i];
|
---|
| 2642 | vmin = kdt.boxmin[i];
|
---|
| 2643 | vmax = kdt.boxmax[i];
|
---|
| 2644 | kdt.x[i] = vx;
|
---|
| 2645 | kdt.curboxmin[i] = vmin;
|
---|
| 2646 | kdt.curboxmax[i] = vmax;
|
---|
| 2647 | if( (double)(vx)<(double)(vmin) )
|
---|
| 2648 | {
|
---|
| 2649 | kdt.curdist = Math.Max(kdt.curdist, vmin-vx);
|
---|
| 2650 | }
|
---|
| 2651 | else
|
---|
| 2652 | {
|
---|
| 2653 | if( (double)(vx)>(double)(vmax) )
|
---|
| 2654 | {
|
---|
| 2655 | kdt.curdist = Math.Max(kdt.curdist, vx-vmax);
|
---|
| 2656 | }
|
---|
| 2657 | }
|
---|
| 2658 | }
|
---|
| 2659 | }
|
---|
| 2660 | if( kdt.normtype==1 )
|
---|
| 2661 | {
|
---|
| 2662 | for(i=0; i<=kdt.nx-1; i++)
|
---|
| 2663 | {
|
---|
| 2664 | vx = x[i];
|
---|
| 2665 | vmin = kdt.boxmin[i];
|
---|
| 2666 | vmax = kdt.boxmax[i];
|
---|
| 2667 | kdt.x[i] = vx;
|
---|
| 2668 | kdt.curboxmin[i] = vmin;
|
---|
| 2669 | kdt.curboxmax[i] = vmax;
|
---|
| 2670 | if( (double)(vx)<(double)(vmin) )
|
---|
| 2671 | {
|
---|
| 2672 | kdt.curdist = kdt.curdist+vmin-vx;
|
---|
| 2673 | }
|
---|
| 2674 | else
|
---|
| 2675 | {
|
---|
| 2676 | if( (double)(vx)>(double)(vmax) )
|
---|
| 2677 | {
|
---|
| 2678 | kdt.curdist = kdt.curdist+vx-vmax;
|
---|
| 2679 | }
|
---|
| 2680 | }
|
---|
| 2681 | }
|
---|
| 2682 | }
|
---|
| 2683 | if( kdt.normtype==2 )
|
---|
| 2684 | {
|
---|
| 2685 | for(i=0; i<=kdt.nx-1; i++)
|
---|
| 2686 | {
|
---|
| 2687 | vx = x[i];
|
---|
| 2688 | vmin = kdt.boxmin[i];
|
---|
| 2689 | vmax = kdt.boxmax[i];
|
---|
| 2690 | kdt.x[i] = vx;
|
---|
| 2691 | kdt.curboxmin[i] = vmin;
|
---|
| 2692 | kdt.curboxmax[i] = vmax;
|
---|
| 2693 | if( (double)(vx)<(double)(vmin) )
|
---|
| 2694 | {
|
---|
| 2695 | kdt.curdist = kdt.curdist+math.sqr(vmin-vx);
|
---|
| 2696 | }
|
---|
| 2697 | else
|
---|
| 2698 | {
|
---|
| 2699 | if( (double)(vx)>(double)(vmax) )
|
---|
| 2700 | {
|
---|
| 2701 | kdt.curdist = kdt.curdist+math.sqr(vx-vmax);
|
---|
| 2702 | }
|
---|
| 2703 | }
|
---|
| 2704 | }
|
---|
| 2705 | }
|
---|
| 2706 | }
|
---|
| 2707 |
|
---|
| 2708 |
|
---|
| 2709 | /*************************************************************************
|
---|
| 2710 | This function allocates all dataset-independent array fields of KDTree,
|
---|
| 2711 | i.e. such array fields that their dimensions do not depend on dataset
|
---|
| 2712 | size.
|
---|
| 2713 |
|
---|
| 2714 | This function do not sets KDT.NX or KDT.NY - it just allocates arrays
|
---|
| 2715 |
|
---|
| 2716 | -- ALGLIB --
|
---|
| 2717 | Copyright 14.03.2011 by Bochkanov Sergey
|
---|
| 2718 | *************************************************************************/
|
---|
| 2719 | private static void kdtreeallocdatasetindependent(kdtree kdt,
|
---|
| 2720 | int nx,
|
---|
| 2721 | int ny)
|
---|
| 2722 | {
|
---|
| 2723 | alglib.ap.assert(kdt.n>0, "KDTreeAllocDatasetIndependent: internal error");
|
---|
| 2724 | kdt.x = new double[nx];
|
---|
| 2725 | kdt.boxmin = new double[nx];
|
---|
| 2726 | kdt.boxmax = new double[nx];
|
---|
| 2727 | kdt.curboxmin = new double[nx];
|
---|
| 2728 | kdt.curboxmax = new double[nx];
|
---|
| 2729 | }
|
---|
| 2730 |
|
---|
| 2731 |
|
---|
| 2732 | /*************************************************************************
|
---|
| 2733 | This function allocates all dataset-dependent array fields of KDTree, i.e.
|
---|
| 2734 | such array fields that their dimensions depend on dataset size.
|
---|
| 2735 |
|
---|
| 2736 | This function do not sets KDT.N, KDT.NX or KDT.NY -
|
---|
| 2737 | it just allocates arrays.
|
---|
| 2738 |
|
---|
| 2739 | -- ALGLIB --
|
---|
| 2740 | Copyright 14.03.2011 by Bochkanov Sergey
|
---|
| 2741 | *************************************************************************/
|
---|
| 2742 | private static void kdtreeallocdatasetdependent(kdtree kdt,
|
---|
| 2743 | int n,
|
---|
| 2744 | int nx,
|
---|
| 2745 | int ny)
|
---|
| 2746 | {
|
---|
| 2747 | alglib.ap.assert(n>0, "KDTreeAllocDatasetDependent: internal error");
|
---|
| 2748 | kdt.xy = new double[n, 2*nx+ny];
|
---|
| 2749 | kdt.tags = new int[n];
|
---|
| 2750 | kdt.idx = new int[n];
|
---|
| 2751 | kdt.r = new double[n];
|
---|
| 2752 | kdt.x = new double[nx];
|
---|
| 2753 | kdt.buf = new double[Math.Max(n, nx)];
|
---|
| 2754 | kdt.nodes = new int[splitnodesize*2*n];
|
---|
| 2755 | kdt.splits = new double[2*n];
|
---|
| 2756 | }
|
---|
| 2757 |
|
---|
| 2758 |
|
---|
| 2759 | /*************************************************************************
|
---|
| 2760 | This function allocates temporaries.
|
---|
| 2761 |
|
---|
| 2762 | This function do not sets KDT.N, KDT.NX or KDT.NY -
|
---|
| 2763 | it just allocates arrays.
|
---|
| 2764 |
|
---|
| 2765 | -- ALGLIB --
|
---|
| 2766 | Copyright 14.03.2011 by Bochkanov Sergey
|
---|
| 2767 | *************************************************************************/
|
---|
| 2768 | private static void kdtreealloctemporaries(kdtree kdt,
|
---|
| 2769 | int n,
|
---|
| 2770 | int nx,
|
---|
| 2771 | int ny)
|
---|
| 2772 | {
|
---|
| 2773 | alglib.ap.assert(n>0, "KDTreeAllocTemporaries: internal error");
|
---|
| 2774 | kdt.x = new double[nx];
|
---|
| 2775 | kdt.idx = new int[n];
|
---|
| 2776 | kdt.r = new double[n];
|
---|
| 2777 | kdt.buf = new double[Math.Max(n, nx)];
|
---|
| 2778 | kdt.curboxmin = new double[nx];
|
---|
| 2779 | kdt.curboxmax = new double[nx];
|
---|
| 2780 | }
|
---|
| 2781 |
|
---|
| 2782 |
|
---|
| 2783 | }
|
---|
| 2784 | }
|
---|
| 2785 |
|
---|