[4977] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 | >>> END OF LICENSE >>>
|
---|
| 18 | *************************************************************************/
|
---|
| 19 | #pragma warning disable 162
|
---|
| 20 | #pragma warning disable 219
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | public partial class alglib
|
---|
| 24 | {
|
---|
| 25 |
|
---|
| 26 |
|
---|
| 27 | /*************************************************************************
|
---|
| 28 |
|
---|
| 29 | *************************************************************************/
|
---|
| 30 | public class odesolverstate
|
---|
| 31 | {
|
---|
| 32 | //
|
---|
| 33 | // Public declarations
|
---|
| 34 | //
|
---|
| 35 | public bool needdy { get { return _innerobj.needdy; } set { _innerobj.needdy = value; } }
|
---|
| 36 | public double[] y { get { return _innerobj.y; } }
|
---|
| 37 | public double[] dy { get { return _innerobj.dy; } }
|
---|
| 38 | public double x { get { return _innerobj.x; } set { _innerobj.x = value; } }
|
---|
| 39 |
|
---|
| 40 | public odesolverstate()
|
---|
| 41 | {
|
---|
| 42 | _innerobj = new odesolver.odesolverstate();
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | //
|
---|
| 46 | // Although some of declarations below are public, you should not use them
|
---|
| 47 | // They are intended for internal use only
|
---|
| 48 | //
|
---|
| 49 | private odesolver.odesolverstate _innerobj;
|
---|
| 50 | public odesolver.odesolverstate innerobj { get { return _innerobj; } }
|
---|
| 51 | public odesolverstate(odesolver.odesolverstate obj)
|
---|
| 52 | {
|
---|
| 53 | _innerobj = obj;
|
---|
| 54 | }
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 |
|
---|
| 58 | /*************************************************************************
|
---|
| 59 |
|
---|
| 60 | *************************************************************************/
|
---|
| 61 | public class odesolverreport
|
---|
| 62 | {
|
---|
| 63 | //
|
---|
| 64 | // Public declarations
|
---|
| 65 | //
|
---|
| 66 | public int nfev { get { return _innerobj.nfev; } set { _innerobj.nfev = value; } }
|
---|
| 67 | public int terminationtype { get { return _innerobj.terminationtype; } set { _innerobj.terminationtype = value; } }
|
---|
| 68 |
|
---|
| 69 | public odesolverreport()
|
---|
| 70 | {
|
---|
| 71 | _innerobj = new odesolver.odesolverreport();
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | //
|
---|
| 75 | // Although some of declarations below are public, you should not use them
|
---|
| 76 | // They are intended for internal use only
|
---|
| 77 | //
|
---|
| 78 | private odesolver.odesolverreport _innerobj;
|
---|
| 79 | public odesolver.odesolverreport innerobj { get { return _innerobj; } }
|
---|
| 80 | public odesolverreport(odesolver.odesolverreport obj)
|
---|
| 81 | {
|
---|
| 82 | _innerobj = obj;
|
---|
| 83 | }
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | /*************************************************************************
|
---|
| 87 | Cash-Karp adaptive ODE solver.
|
---|
| 88 |
|
---|
| 89 | This subroutine solves ODE Y'=f(Y,x) with initial conditions Y(xs)=Ys
|
---|
| 90 | (here Y may be single variable or vector of N variables).
|
---|
| 91 |
|
---|
| 92 | INPUT PARAMETERS:
|
---|
| 93 | Y - initial conditions, array[0..N-1].
|
---|
| 94 | contains values of Y[] at X[0]
|
---|
| 95 | N - system size
|
---|
| 96 | X - points at which Y should be tabulated, array[0..M-1]
|
---|
| 97 | integrations starts at X[0], ends at X[M-1], intermediate
|
---|
| 98 | values at X[i] are returned too.
|
---|
| 99 | SHOULD BE ORDERED BY ASCENDING OR BY DESCENDING!!!!
|
---|
| 100 | M - number of intermediate points + first point + last point:
|
---|
| 101 | * M>2 means that you need both Y(X[M-1]) and M-2 values at
|
---|
| 102 | intermediate points
|
---|
| 103 | * M=2 means that you want just to integrate from X[0] to
|
---|
| 104 | X[1] and don't interested in intermediate values.
|
---|
| 105 | * M=1 means that you don't want to integrate :)
|
---|
| 106 | it is degenerate case, but it will be handled correctly.
|
---|
| 107 | * M<1 means error
|
---|
| 108 | Eps - tolerance (absolute/relative error on each step will be
|
---|
| 109 | less than Eps). When passing:
|
---|
| 110 | * Eps>0, it means desired ABSOLUTE error
|
---|
| 111 | * Eps<0, it means desired RELATIVE error. Relative errors
|
---|
| 112 | are calculated with respect to maximum values of Y seen
|
---|
| 113 | so far. Be careful to use this criterion when starting
|
---|
| 114 | from Y[] that are close to zero.
|
---|
| 115 | H - initial step lenth, it will be adjusted automatically
|
---|
| 116 | after the first step. If H=0, step will be selected
|
---|
| 117 | automatically (usualy it will be equal to 0.001 of
|
---|
| 118 | min(x[i]-x[j])).
|
---|
| 119 |
|
---|
| 120 | OUTPUT PARAMETERS
|
---|
| 121 | State - structure which stores algorithm state between subsequent
|
---|
| 122 | calls of OdeSolverIteration. Used for reverse communication.
|
---|
| 123 | This structure should be passed to the OdeSolverIteration
|
---|
| 124 | subroutine.
|
---|
| 125 |
|
---|
| 126 | SEE ALSO
|
---|
| 127 | AutoGKSmoothW, AutoGKSingular, AutoGKIteration, AutoGKResults.
|
---|
| 128 |
|
---|
| 129 |
|
---|
| 130 | -- ALGLIB --
|
---|
| 131 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
| 132 | *************************************************************************/
|
---|
| 133 | public static void odesolverrkck(double[] y, int n, double[] x, int m, double eps, double h, out odesolverstate state)
|
---|
| 134 | {
|
---|
| 135 | state = new odesolverstate();
|
---|
| 136 | odesolver.odesolverrkck(y, n, x, m, eps, h, state.innerobj);
|
---|
| 137 | return;
|
---|
| 138 | }
|
---|
| 139 | public static void odesolverrkck(double[] y, double[] x, double eps, double h, out odesolverstate state)
|
---|
| 140 | {
|
---|
| 141 | int n;
|
---|
| 142 | int m;
|
---|
| 143 |
|
---|
| 144 | state = new odesolverstate();
|
---|
| 145 | n = ap.len(y);
|
---|
| 146 | m = ap.len(x);
|
---|
| 147 | odesolver.odesolverrkck(y, n, x, m, eps, h, state.innerobj);
|
---|
| 148 |
|
---|
| 149 | return;
|
---|
| 150 | }
|
---|
| 151 |
|
---|
| 152 | /*************************************************************************
|
---|
| 153 | This function provides reverse communication interface
|
---|
| 154 | Reverse communication interface is not documented or recommended to use.
|
---|
| 155 | See below for functions which provide better documented API
|
---|
| 156 | *************************************************************************/
|
---|
| 157 | public static bool odesolveriteration(odesolverstate state)
|
---|
| 158 | {
|
---|
| 159 |
|
---|
| 160 | bool result = odesolver.odesolveriteration(state.innerobj);
|
---|
| 161 | return result;
|
---|
| 162 | }
|
---|
| 163 | /*************************************************************************
|
---|
| 164 | This function is used to launcn iterations of ODE solver
|
---|
| 165 |
|
---|
| 166 | It accepts following parameters:
|
---|
| 167 | diff - callback which calculates dy/dx for given y and x
|
---|
| 168 | obj - optional object which is passed to diff; can be NULL
|
---|
| 169 |
|
---|
| 170 |
|
---|
| 171 | -- ALGLIB --
|
---|
| 172 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
| 173 |
|
---|
| 174 | *************************************************************************/
|
---|
| 175 | public static void odesolversolve(odesolverstate state, ndimensional_ode_rp diff, object obj)
|
---|
| 176 | {
|
---|
| 177 | if( diff==null )
|
---|
| 178 | throw new alglibexception("ALGLIB: error in 'odesolversolve()' (diff is null)");
|
---|
| 179 | while( alglib.odesolveriteration(state) )
|
---|
| 180 | {
|
---|
| 181 | if( state.needdy )
|
---|
| 182 | {
|
---|
| 183 | diff(state.innerobj.y, state.innerobj.x, state.innerobj.dy, obj);
|
---|
| 184 | continue;
|
---|
| 185 | }
|
---|
| 186 | throw new alglibexception("ALGLIB: unexpected error in 'odesolversolve'");
|
---|
| 187 | }
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 |
|
---|
| 191 |
|
---|
| 192 | /*************************************************************************
|
---|
| 193 | ODE solver results
|
---|
| 194 |
|
---|
| 195 | Called after OdeSolverIteration returned False.
|
---|
| 196 |
|
---|
| 197 | INPUT PARAMETERS:
|
---|
| 198 | State - algorithm state (used by OdeSolverIteration).
|
---|
| 199 |
|
---|
| 200 | OUTPUT PARAMETERS:
|
---|
| 201 | M - number of tabulated values, M>=1
|
---|
| 202 | XTbl - array[0..M-1], values of X
|
---|
| 203 | YTbl - array[0..M-1,0..N-1], values of Y in X[i]
|
---|
| 204 | Rep - solver report:
|
---|
| 205 | * Rep.TerminationType completetion code:
|
---|
| 206 | * -2 X is not ordered by ascending/descending or
|
---|
| 207 | there are non-distinct X[], i.e. X[i]=X[i+1]
|
---|
| 208 | * -1 incorrect parameters were specified
|
---|
| 209 | * 1 task has been solved
|
---|
| 210 | * Rep.NFEV contains number of function calculations
|
---|
| 211 |
|
---|
| 212 | -- ALGLIB --
|
---|
| 213 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
| 214 | *************************************************************************/
|
---|
| 215 | public static void odesolverresults(odesolverstate state, out int m, out double[] xtbl, out double[,] ytbl, out odesolverreport rep)
|
---|
| 216 | {
|
---|
| 217 | m = 0;
|
---|
| 218 | xtbl = new double[0];
|
---|
| 219 | ytbl = new double[0,0];
|
---|
| 220 | rep = new odesolverreport();
|
---|
| 221 | odesolver.odesolverresults(state.innerobj, ref m, ref xtbl, ref ytbl, rep.innerobj);
|
---|
| 222 | return;
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | }
|
---|
| 226 | public partial class alglib
|
---|
| 227 | {
|
---|
| 228 | public class odesolver
|
---|
| 229 | {
|
---|
| 230 | public class odesolverstate
|
---|
| 231 | {
|
---|
| 232 | public int n;
|
---|
| 233 | public int m;
|
---|
| 234 | public double xscale;
|
---|
| 235 | public double h;
|
---|
| 236 | public double eps;
|
---|
| 237 | public bool fraceps;
|
---|
| 238 | public double[] yc;
|
---|
| 239 | public double[] escale;
|
---|
| 240 | public double[] xg;
|
---|
| 241 | public int solvertype;
|
---|
| 242 | public bool needdy;
|
---|
| 243 | public double x;
|
---|
| 244 | public double[] y;
|
---|
| 245 | public double[] dy;
|
---|
| 246 | public double[,] ytbl;
|
---|
| 247 | public int repterminationtype;
|
---|
| 248 | public int repnfev;
|
---|
| 249 | public double[] yn;
|
---|
| 250 | public double[] yns;
|
---|
| 251 | public double[] rka;
|
---|
| 252 | public double[] rkc;
|
---|
| 253 | public double[] rkcs;
|
---|
| 254 | public double[,] rkb;
|
---|
| 255 | public double[,] rkk;
|
---|
| 256 | public rcommstate rstate;
|
---|
| 257 | public odesolverstate()
|
---|
| 258 | {
|
---|
| 259 | yc = new double[0];
|
---|
| 260 | escale = new double[0];
|
---|
| 261 | xg = new double[0];
|
---|
| 262 | y = new double[0];
|
---|
| 263 | dy = new double[0];
|
---|
| 264 | ytbl = new double[0,0];
|
---|
| 265 | yn = new double[0];
|
---|
| 266 | yns = new double[0];
|
---|
| 267 | rka = new double[0];
|
---|
| 268 | rkc = new double[0];
|
---|
| 269 | rkcs = new double[0];
|
---|
| 270 | rkb = new double[0,0];
|
---|
| 271 | rkk = new double[0,0];
|
---|
| 272 | rstate = new rcommstate();
|
---|
| 273 | }
|
---|
| 274 | };
|
---|
| 275 |
|
---|
| 276 |
|
---|
| 277 | public class odesolverreport
|
---|
| 278 | {
|
---|
| 279 | public int nfev;
|
---|
| 280 | public int terminationtype;
|
---|
| 281 | };
|
---|
| 282 |
|
---|
| 283 |
|
---|
| 284 |
|
---|
| 285 |
|
---|
| 286 | public const double odesolvermaxgrow = 3.0;
|
---|
| 287 | public const double odesolvermaxshrink = 10.0;
|
---|
| 288 |
|
---|
| 289 |
|
---|
| 290 | /*************************************************************************
|
---|
| 291 | Cash-Karp adaptive ODE solver.
|
---|
| 292 |
|
---|
| 293 | This subroutine solves ODE Y'=f(Y,x) with initial conditions Y(xs)=Ys
|
---|
| 294 | (here Y may be single variable or vector of N variables).
|
---|
| 295 |
|
---|
| 296 | INPUT PARAMETERS:
|
---|
| 297 | Y - initial conditions, array[0..N-1].
|
---|
| 298 | contains values of Y[] at X[0]
|
---|
| 299 | N - system size
|
---|
| 300 | X - points at which Y should be tabulated, array[0..M-1]
|
---|
| 301 | integrations starts at X[0], ends at X[M-1], intermediate
|
---|
| 302 | values at X[i] are returned too.
|
---|
| 303 | SHOULD BE ORDERED BY ASCENDING OR BY DESCENDING!!!!
|
---|
| 304 | M - number of intermediate points + first point + last point:
|
---|
| 305 | * M>2 means that you need both Y(X[M-1]) and M-2 values at
|
---|
| 306 | intermediate points
|
---|
| 307 | * M=2 means that you want just to integrate from X[0] to
|
---|
| 308 | X[1] and don't interested in intermediate values.
|
---|
| 309 | * M=1 means that you don't want to integrate :)
|
---|
| 310 | it is degenerate case, but it will be handled correctly.
|
---|
| 311 | * M<1 means error
|
---|
| 312 | Eps - tolerance (absolute/relative error on each step will be
|
---|
| 313 | less than Eps). When passing:
|
---|
| 314 | * Eps>0, it means desired ABSOLUTE error
|
---|
| 315 | * Eps<0, it means desired RELATIVE error. Relative errors
|
---|
| 316 | are calculated with respect to maximum values of Y seen
|
---|
| 317 | so far. Be careful to use this criterion when starting
|
---|
| 318 | from Y[] that are close to zero.
|
---|
| 319 | H - initial step lenth, it will be adjusted automatically
|
---|
| 320 | after the first step. If H=0, step will be selected
|
---|
| 321 | automatically (usualy it will be equal to 0.001 of
|
---|
| 322 | min(x[i]-x[j])).
|
---|
| 323 |
|
---|
| 324 | OUTPUT PARAMETERS
|
---|
| 325 | State - structure which stores algorithm state between subsequent
|
---|
| 326 | calls of OdeSolverIteration. Used for reverse communication.
|
---|
| 327 | This structure should be passed to the OdeSolverIteration
|
---|
| 328 | subroutine.
|
---|
| 329 |
|
---|
| 330 | SEE ALSO
|
---|
| 331 | AutoGKSmoothW, AutoGKSingular, AutoGKIteration, AutoGKResults.
|
---|
| 332 |
|
---|
| 333 |
|
---|
| 334 | -- ALGLIB --
|
---|
| 335 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
| 336 | *************************************************************************/
|
---|
| 337 | public static void odesolverrkck(double[] y,
|
---|
| 338 | int n,
|
---|
| 339 | double[] x,
|
---|
| 340 | int m,
|
---|
| 341 | double eps,
|
---|
| 342 | double h,
|
---|
| 343 | odesolverstate state)
|
---|
| 344 | {
|
---|
| 345 | ap.assert(n>=1, "ODESolverRKCK: N<1!");
|
---|
| 346 | ap.assert(m>=1, "ODESolverRKCK: M<1!");
|
---|
| 347 | ap.assert(ap.len(y)>=n, "ODESolverRKCK: Length(Y)<N!");
|
---|
| 348 | ap.assert(ap.len(x)>=m, "ODESolverRKCK: Length(X)<M!");
|
---|
| 349 | ap.assert(apserv.isfinitevector(y, n), "ODESolverRKCK: Y contains infinite or NaN values!");
|
---|
| 350 | ap.assert(apserv.isfinitevector(x, m), "ODESolverRKCK: Y contains infinite or NaN values!");
|
---|
| 351 | ap.assert(math.isfinite(eps), "ODESolverRKCK: Eps is not finite!");
|
---|
| 352 | ap.assert((double)(eps)!=(double)(0), "ODESolverRKCK: Eps is zero!");
|
---|
| 353 | ap.assert(math.isfinite(h), "ODESolverRKCK: H is not finite!");
|
---|
| 354 | odesolverinit(0, y, n, x, m, eps, h, state);
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 |
|
---|
| 358 | /*************************************************************************
|
---|
| 359 |
|
---|
| 360 | -- ALGLIB --
|
---|
| 361 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
| 362 | *************************************************************************/
|
---|
| 363 | public static bool odesolveriteration(odesolverstate state)
|
---|
| 364 | {
|
---|
| 365 | bool result = new bool();
|
---|
| 366 | int n = 0;
|
---|
| 367 | int m = 0;
|
---|
| 368 | int i = 0;
|
---|
| 369 | int j = 0;
|
---|
| 370 | int k = 0;
|
---|
| 371 | double xc = 0;
|
---|
| 372 | double v = 0;
|
---|
| 373 | double h = 0;
|
---|
| 374 | double h2 = 0;
|
---|
| 375 | bool gridpoint = new bool();
|
---|
| 376 | double err = 0;
|
---|
| 377 | double maxgrowpow = 0;
|
---|
| 378 | int klimit = 0;
|
---|
| 379 | int i_ = 0;
|
---|
| 380 |
|
---|
| 381 |
|
---|
| 382 | //
|
---|
| 383 | // Reverse communication preparations
|
---|
| 384 | // I know it looks ugly, but it works the same way
|
---|
| 385 | // anywhere from C++ to Python.
|
---|
| 386 | //
|
---|
| 387 | // This code initializes locals by:
|
---|
| 388 | // * random values determined during code
|
---|
| 389 | // generation - on first subroutine call
|
---|
| 390 | // * values from previous call - on subsequent calls
|
---|
| 391 | //
|
---|
| 392 | if( state.rstate.stage>=0 )
|
---|
| 393 | {
|
---|
| 394 | n = state.rstate.ia[0];
|
---|
| 395 | m = state.rstate.ia[1];
|
---|
| 396 | i = state.rstate.ia[2];
|
---|
| 397 | j = state.rstate.ia[3];
|
---|
| 398 | k = state.rstate.ia[4];
|
---|
| 399 | klimit = state.rstate.ia[5];
|
---|
| 400 | gridpoint = state.rstate.ba[0];
|
---|
| 401 | xc = state.rstate.ra[0];
|
---|
| 402 | v = state.rstate.ra[1];
|
---|
| 403 | h = state.rstate.ra[2];
|
---|
| 404 | h2 = state.rstate.ra[3];
|
---|
| 405 | err = state.rstate.ra[4];
|
---|
| 406 | maxgrowpow = state.rstate.ra[5];
|
---|
| 407 | }
|
---|
| 408 | else
|
---|
| 409 | {
|
---|
| 410 | n = -983;
|
---|
| 411 | m = -989;
|
---|
| 412 | i = -834;
|
---|
| 413 | j = 900;
|
---|
| 414 | k = -287;
|
---|
| 415 | klimit = 364;
|
---|
| 416 | gridpoint = false;
|
---|
| 417 | xc = -338;
|
---|
| 418 | v = -686;
|
---|
| 419 | h = 912;
|
---|
| 420 | h2 = 585;
|
---|
| 421 | err = 497;
|
---|
| 422 | maxgrowpow = -271;
|
---|
| 423 | }
|
---|
| 424 | if( state.rstate.stage==0 )
|
---|
| 425 | {
|
---|
| 426 | goto lbl_0;
|
---|
| 427 | }
|
---|
| 428 |
|
---|
| 429 | //
|
---|
| 430 | // Routine body
|
---|
| 431 | //
|
---|
| 432 |
|
---|
| 433 | //
|
---|
| 434 | // prepare
|
---|
| 435 | //
|
---|
| 436 | if( state.repterminationtype!=0 )
|
---|
| 437 | {
|
---|
| 438 | result = false;
|
---|
| 439 | return result;
|
---|
| 440 | }
|
---|
| 441 | n = state.n;
|
---|
| 442 | m = state.m;
|
---|
| 443 | h = state.h;
|
---|
| 444 | maxgrowpow = Math.Pow(odesolvermaxgrow, 5);
|
---|
| 445 | state.repnfev = 0;
|
---|
| 446 |
|
---|
| 447 | //
|
---|
| 448 | // some preliminary checks for internal errors
|
---|
| 449 | // after this we assume that H>0 and M>1
|
---|
| 450 | //
|
---|
| 451 | ap.assert((double)(state.h)>(double)(0), "ODESolver: internal error");
|
---|
| 452 | ap.assert(m>1, "ODESolverIteration: internal error");
|
---|
| 453 |
|
---|
| 454 | //
|
---|
| 455 | // choose solver
|
---|
| 456 | //
|
---|
| 457 | if( state.solvertype!=0 )
|
---|
| 458 | {
|
---|
| 459 | goto lbl_1;
|
---|
| 460 | }
|
---|
| 461 |
|
---|
| 462 | //
|
---|
| 463 | // Cask-Karp solver
|
---|
| 464 | // Prepare coefficients table.
|
---|
| 465 | // Check it for errors
|
---|
| 466 | //
|
---|
| 467 | state.rka = new double[6];
|
---|
| 468 | state.rka[0] = 0;
|
---|
| 469 | state.rka[1] = (double)1/(double)5;
|
---|
| 470 | state.rka[2] = (double)3/(double)10;
|
---|
| 471 | state.rka[3] = (double)3/(double)5;
|
---|
| 472 | state.rka[4] = 1;
|
---|
| 473 | state.rka[5] = (double)7/(double)8;
|
---|
| 474 | state.rkb = new double[6, 5];
|
---|
| 475 | state.rkb[1,0] = (double)1/(double)5;
|
---|
| 476 | state.rkb[2,0] = (double)3/(double)40;
|
---|
| 477 | state.rkb[2,1] = (double)9/(double)40;
|
---|
| 478 | state.rkb[3,0] = (double)3/(double)10;
|
---|
| 479 | state.rkb[3,1] = -((double)9/(double)10);
|
---|
| 480 | state.rkb[3,2] = (double)6/(double)5;
|
---|
| 481 | state.rkb[4,0] = -((double)11/(double)54);
|
---|
| 482 | state.rkb[4,1] = (double)5/(double)2;
|
---|
| 483 | state.rkb[4,2] = -((double)70/(double)27);
|
---|
| 484 | state.rkb[4,3] = (double)35/(double)27;
|
---|
| 485 | state.rkb[5,0] = (double)1631/(double)55296;
|
---|
| 486 | state.rkb[5,1] = (double)175/(double)512;
|
---|
| 487 | state.rkb[5,2] = (double)575/(double)13824;
|
---|
| 488 | state.rkb[5,3] = (double)44275/(double)110592;
|
---|
| 489 | state.rkb[5,4] = (double)253/(double)4096;
|
---|
| 490 | state.rkc = new double[6];
|
---|
| 491 | state.rkc[0] = (double)37/(double)378;
|
---|
| 492 | state.rkc[1] = 0;
|
---|
| 493 | state.rkc[2] = (double)250/(double)621;
|
---|
| 494 | state.rkc[3] = (double)125/(double)594;
|
---|
| 495 | state.rkc[4] = 0;
|
---|
| 496 | state.rkc[5] = (double)512/(double)1771;
|
---|
| 497 | state.rkcs = new double[6];
|
---|
| 498 | state.rkcs[0] = (double)2825/(double)27648;
|
---|
| 499 | state.rkcs[1] = 0;
|
---|
| 500 | state.rkcs[2] = (double)18575/(double)48384;
|
---|
| 501 | state.rkcs[3] = (double)13525/(double)55296;
|
---|
| 502 | state.rkcs[4] = (double)277/(double)14336;
|
---|
| 503 | state.rkcs[5] = (double)1/(double)4;
|
---|
| 504 | state.rkk = new double[6, n];
|
---|
| 505 |
|
---|
| 506 | //
|
---|
| 507 | // Main cycle consists of two iterations:
|
---|
| 508 | // * outer where we travel from X[i-1] to X[i]
|
---|
| 509 | // * inner where we travel inside [X[i-1],X[i]]
|
---|
| 510 | //
|
---|
| 511 | state.ytbl = new double[m, n];
|
---|
| 512 | state.escale = new double[n];
|
---|
| 513 | state.yn = new double[n];
|
---|
| 514 | state.yns = new double[n];
|
---|
| 515 | xc = state.xg[0];
|
---|
| 516 | for(i_=0; i_<=n-1;i_++)
|
---|
| 517 | {
|
---|
| 518 | state.ytbl[0,i_] = state.yc[i_];
|
---|
| 519 | }
|
---|
| 520 | for(j=0; j<=n-1; j++)
|
---|
| 521 | {
|
---|
| 522 | state.escale[j] = 0;
|
---|
| 523 | }
|
---|
| 524 | i = 1;
|
---|
| 525 | lbl_3:
|
---|
| 526 | if( i>m-1 )
|
---|
| 527 | {
|
---|
| 528 | goto lbl_5;
|
---|
| 529 | }
|
---|
| 530 |
|
---|
| 531 | //
|
---|
| 532 | // begin inner iteration
|
---|
| 533 | //
|
---|
| 534 | lbl_6:
|
---|
| 535 | if( false )
|
---|
| 536 | {
|
---|
| 537 | goto lbl_7;
|
---|
| 538 | }
|
---|
| 539 |
|
---|
| 540 | //
|
---|
| 541 | // truncate step if needed (beyond right boundary).
|
---|
| 542 | // determine should we store X or not
|
---|
| 543 | //
|
---|
| 544 | if( (double)(xc+h)>=(double)(state.xg[i]) )
|
---|
| 545 | {
|
---|
| 546 | h = state.xg[i]-xc;
|
---|
| 547 | gridpoint = true;
|
---|
| 548 | }
|
---|
| 549 | else
|
---|
| 550 | {
|
---|
| 551 | gridpoint = false;
|
---|
| 552 | }
|
---|
| 553 |
|
---|
| 554 | //
|
---|
| 555 | // Update error scale maximums
|
---|
| 556 | //
|
---|
| 557 | // These maximums are initialized by zeros,
|
---|
| 558 | // then updated every iterations.
|
---|
| 559 | //
|
---|
| 560 | for(j=0; j<=n-1; j++)
|
---|
| 561 | {
|
---|
| 562 | state.escale[j] = Math.Max(state.escale[j], Math.Abs(state.yc[j]));
|
---|
| 563 | }
|
---|
| 564 |
|
---|
| 565 | //
|
---|
| 566 | // make one step:
|
---|
| 567 | // 1. calculate all info needed to do step
|
---|
| 568 | // 2. update errors scale maximums using values/derivatives
|
---|
| 569 | // obtained during (1)
|
---|
| 570 | //
|
---|
| 571 | // Take into account that we use scaling of X to reduce task
|
---|
| 572 | // to the form where x[0] < x[1] < ... < x[n-1]. So X is
|
---|
| 573 | // replaced by x=xscale*t, and dy/dx=f(y,x) is replaced
|
---|
| 574 | // by dy/dt=xscale*f(y,xscale*t).
|
---|
| 575 | //
|
---|
| 576 | for(i_=0; i_<=n-1;i_++)
|
---|
| 577 | {
|
---|
| 578 | state.yn[i_] = state.yc[i_];
|
---|
| 579 | }
|
---|
| 580 | for(i_=0; i_<=n-1;i_++)
|
---|
| 581 | {
|
---|
| 582 | state.yns[i_] = state.yc[i_];
|
---|
| 583 | }
|
---|
| 584 | k = 0;
|
---|
| 585 | lbl_8:
|
---|
| 586 | if( k>5 )
|
---|
| 587 | {
|
---|
| 588 | goto lbl_10;
|
---|
| 589 | }
|
---|
| 590 |
|
---|
| 591 | //
|
---|
| 592 | // prepare data for the next update of YN/YNS
|
---|
| 593 | //
|
---|
| 594 | state.x = state.xscale*(xc+state.rka[k]*h);
|
---|
| 595 | for(i_=0; i_<=n-1;i_++)
|
---|
| 596 | {
|
---|
| 597 | state.y[i_] = state.yc[i_];
|
---|
| 598 | }
|
---|
| 599 | for(j=0; j<=k-1; j++)
|
---|
| 600 | {
|
---|
| 601 | v = state.rkb[k,j];
|
---|
| 602 | for(i_=0; i_<=n-1;i_++)
|
---|
| 603 | {
|
---|
| 604 | state.y[i_] = state.y[i_] + v*state.rkk[j,i_];
|
---|
| 605 | }
|
---|
| 606 | }
|
---|
| 607 | state.needdy = true;
|
---|
| 608 | state.rstate.stage = 0;
|
---|
| 609 | goto lbl_rcomm;
|
---|
| 610 | lbl_0:
|
---|
| 611 | state.needdy = false;
|
---|
| 612 | state.repnfev = state.repnfev+1;
|
---|
| 613 | v = h*state.xscale;
|
---|
| 614 | for(i_=0; i_<=n-1;i_++)
|
---|
| 615 | {
|
---|
| 616 | state.rkk[k,i_] = v*state.dy[i_];
|
---|
| 617 | }
|
---|
| 618 |
|
---|
| 619 | //
|
---|
| 620 | // update YN/YNS
|
---|
| 621 | //
|
---|
| 622 | v = state.rkc[k];
|
---|
| 623 | for(i_=0; i_<=n-1;i_++)
|
---|
| 624 | {
|
---|
| 625 | state.yn[i_] = state.yn[i_] + v*state.rkk[k,i_];
|
---|
| 626 | }
|
---|
| 627 | v = state.rkcs[k];
|
---|
| 628 | for(i_=0; i_<=n-1;i_++)
|
---|
| 629 | {
|
---|
| 630 | state.yns[i_] = state.yns[i_] + v*state.rkk[k,i_];
|
---|
| 631 | }
|
---|
| 632 | k = k+1;
|
---|
| 633 | goto lbl_8;
|
---|
| 634 | lbl_10:
|
---|
| 635 |
|
---|
| 636 | //
|
---|
| 637 | // estimate error
|
---|
| 638 | //
|
---|
| 639 | err = 0;
|
---|
| 640 | for(j=0; j<=n-1; j++)
|
---|
| 641 | {
|
---|
| 642 | if( !state.fraceps )
|
---|
| 643 | {
|
---|
| 644 |
|
---|
| 645 | //
|
---|
| 646 | // absolute error is estimated
|
---|
| 647 | //
|
---|
| 648 | err = Math.Max(err, Math.Abs(state.yn[j]-state.yns[j]));
|
---|
| 649 | }
|
---|
| 650 | else
|
---|
| 651 | {
|
---|
| 652 |
|
---|
| 653 | //
|
---|
| 654 | // Relative error is estimated
|
---|
| 655 | //
|
---|
| 656 | v = state.escale[j];
|
---|
| 657 | if( (double)(v)==(double)(0) )
|
---|
| 658 | {
|
---|
| 659 | v = 1;
|
---|
| 660 | }
|
---|
| 661 | err = Math.Max(err, Math.Abs(state.yn[j]-state.yns[j])/v);
|
---|
| 662 | }
|
---|
| 663 | }
|
---|
| 664 |
|
---|
| 665 | //
|
---|
| 666 | // calculate new step, restart if necessary
|
---|
| 667 | //
|
---|
| 668 | if( (double)(maxgrowpow*err)<=(double)(state.eps) )
|
---|
| 669 | {
|
---|
| 670 | h2 = odesolvermaxgrow*h;
|
---|
| 671 | }
|
---|
| 672 | else
|
---|
| 673 | {
|
---|
| 674 | h2 = h*Math.Pow(state.eps/err, 0.2);
|
---|
| 675 | }
|
---|
| 676 | if( (double)(h2)<(double)(h/odesolvermaxshrink) )
|
---|
| 677 | {
|
---|
| 678 | h2 = h/odesolvermaxshrink;
|
---|
| 679 | }
|
---|
| 680 | if( (double)(err)>(double)(state.eps) )
|
---|
| 681 | {
|
---|
| 682 | h = h2;
|
---|
| 683 | goto lbl_6;
|
---|
| 684 | }
|
---|
| 685 |
|
---|
| 686 | //
|
---|
| 687 | // advance position
|
---|
| 688 | //
|
---|
| 689 | xc = xc+h;
|
---|
| 690 | for(i_=0; i_<=n-1;i_++)
|
---|
| 691 | {
|
---|
| 692 | state.yc[i_] = state.yn[i_];
|
---|
| 693 | }
|
---|
| 694 |
|
---|
| 695 | //
|
---|
| 696 | // update H
|
---|
| 697 | //
|
---|
| 698 | h = h2;
|
---|
| 699 |
|
---|
| 700 | //
|
---|
| 701 | // break on grid point
|
---|
| 702 | //
|
---|
| 703 | if( gridpoint )
|
---|
| 704 | {
|
---|
| 705 | goto lbl_7;
|
---|
| 706 | }
|
---|
| 707 | goto lbl_6;
|
---|
| 708 | lbl_7:
|
---|
| 709 |
|
---|
| 710 | //
|
---|
| 711 | // save result
|
---|
| 712 | //
|
---|
| 713 | for(i_=0; i_<=n-1;i_++)
|
---|
| 714 | {
|
---|
| 715 | state.ytbl[i,i_] = state.yc[i_];
|
---|
| 716 | }
|
---|
| 717 | i = i+1;
|
---|
| 718 | goto lbl_3;
|
---|
| 719 | lbl_5:
|
---|
| 720 | state.repterminationtype = 1;
|
---|
| 721 | result = false;
|
---|
| 722 | return result;
|
---|
| 723 | lbl_1:
|
---|
| 724 | result = false;
|
---|
| 725 | return result;
|
---|
| 726 |
|
---|
| 727 | //
|
---|
| 728 | // Saving state
|
---|
| 729 | //
|
---|
| 730 | lbl_rcomm:
|
---|
| 731 | result = true;
|
---|
| 732 | state.rstate.ia[0] = n;
|
---|
| 733 | state.rstate.ia[1] = m;
|
---|
| 734 | state.rstate.ia[2] = i;
|
---|
| 735 | state.rstate.ia[3] = j;
|
---|
| 736 | state.rstate.ia[4] = k;
|
---|
| 737 | state.rstate.ia[5] = klimit;
|
---|
| 738 | state.rstate.ba[0] = gridpoint;
|
---|
| 739 | state.rstate.ra[0] = xc;
|
---|
| 740 | state.rstate.ra[1] = v;
|
---|
| 741 | state.rstate.ra[2] = h;
|
---|
| 742 | state.rstate.ra[3] = h2;
|
---|
| 743 | state.rstate.ra[4] = err;
|
---|
| 744 | state.rstate.ra[5] = maxgrowpow;
|
---|
| 745 | return result;
|
---|
| 746 | }
|
---|
| 747 |
|
---|
| 748 |
|
---|
| 749 | /*************************************************************************
|
---|
| 750 | ODE solver results
|
---|
| 751 |
|
---|
| 752 | Called after OdeSolverIteration returned False.
|
---|
| 753 |
|
---|
| 754 | INPUT PARAMETERS:
|
---|
| 755 | State - algorithm state (used by OdeSolverIteration).
|
---|
| 756 |
|
---|
| 757 | OUTPUT PARAMETERS:
|
---|
| 758 | M - number of tabulated values, M>=1
|
---|
| 759 | XTbl - array[0..M-1], values of X
|
---|
| 760 | YTbl - array[0..M-1,0..N-1], values of Y in X[i]
|
---|
| 761 | Rep - solver report:
|
---|
| 762 | * Rep.TerminationType completetion code:
|
---|
| 763 | * -2 X is not ordered by ascending/descending or
|
---|
| 764 | there are non-distinct X[], i.e. X[i]=X[i+1]
|
---|
| 765 | * -1 incorrect parameters were specified
|
---|
| 766 | * 1 task has been solved
|
---|
| 767 | * Rep.NFEV contains number of function calculations
|
---|
| 768 |
|
---|
| 769 | -- ALGLIB --
|
---|
| 770 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
| 771 | *************************************************************************/
|
---|
| 772 | public static void odesolverresults(odesolverstate state,
|
---|
| 773 | ref int m,
|
---|
| 774 | ref double[] xtbl,
|
---|
| 775 | ref double[,] ytbl,
|
---|
| 776 | odesolverreport rep)
|
---|
| 777 | {
|
---|
| 778 | double v = 0;
|
---|
| 779 | int i = 0;
|
---|
| 780 | int i_ = 0;
|
---|
| 781 |
|
---|
| 782 | m = 0;
|
---|
| 783 | xtbl = new double[0];
|
---|
| 784 | ytbl = new double[0,0];
|
---|
| 785 |
|
---|
| 786 | rep.terminationtype = state.repterminationtype;
|
---|
| 787 | if( rep.terminationtype>0 )
|
---|
| 788 | {
|
---|
| 789 | m = state.m;
|
---|
| 790 | rep.nfev = state.repnfev;
|
---|
| 791 | xtbl = new double[state.m];
|
---|
| 792 | v = state.xscale;
|
---|
| 793 | for(i_=0; i_<=state.m-1;i_++)
|
---|
| 794 | {
|
---|
| 795 | xtbl[i_] = v*state.xg[i_];
|
---|
| 796 | }
|
---|
| 797 | ytbl = new double[state.m, state.n];
|
---|
| 798 | for(i=0; i<=state.m-1; i++)
|
---|
| 799 | {
|
---|
| 800 | for(i_=0; i_<=state.n-1;i_++)
|
---|
| 801 | {
|
---|
| 802 | ytbl[i,i_] = state.ytbl[i,i_];
|
---|
| 803 | }
|
---|
| 804 | }
|
---|
| 805 | }
|
---|
| 806 | else
|
---|
| 807 | {
|
---|
| 808 | rep.nfev = 0;
|
---|
| 809 | }
|
---|
| 810 | }
|
---|
| 811 |
|
---|
| 812 |
|
---|
| 813 | /*************************************************************************
|
---|
| 814 | Internal initialization subroutine
|
---|
| 815 | *************************************************************************/
|
---|
| 816 | private static void odesolverinit(int solvertype,
|
---|
| 817 | double[] y,
|
---|
| 818 | int n,
|
---|
| 819 | double[] x,
|
---|
| 820 | int m,
|
---|
| 821 | double eps,
|
---|
| 822 | double h,
|
---|
| 823 | odesolverstate state)
|
---|
| 824 | {
|
---|
| 825 | int i = 0;
|
---|
| 826 | double v = 0;
|
---|
| 827 | int i_ = 0;
|
---|
| 828 |
|
---|
| 829 |
|
---|
| 830 | //
|
---|
| 831 | // Prepare RComm
|
---|
| 832 | //
|
---|
| 833 | state.rstate.ia = new int[5+1];
|
---|
| 834 | state.rstate.ba = new bool[0+1];
|
---|
| 835 | state.rstate.ra = new double[5+1];
|
---|
| 836 | state.rstate.stage = -1;
|
---|
| 837 | state.needdy = false;
|
---|
| 838 |
|
---|
| 839 | //
|
---|
| 840 | // check parameters.
|
---|
| 841 | //
|
---|
| 842 | if( (n<=0 | m<1) | (double)(eps)==(double)(0) )
|
---|
| 843 | {
|
---|
| 844 | state.repterminationtype = -1;
|
---|
| 845 | return;
|
---|
| 846 | }
|
---|
| 847 | if( (double)(h)<(double)(0) )
|
---|
| 848 | {
|
---|
| 849 | h = -h;
|
---|
| 850 | }
|
---|
| 851 |
|
---|
| 852 | //
|
---|
| 853 | // quick exit if necessary.
|
---|
| 854 | // after this block we assume that M>1
|
---|
| 855 | //
|
---|
| 856 | if( m==1 )
|
---|
| 857 | {
|
---|
| 858 | state.repnfev = 0;
|
---|
| 859 | state.repterminationtype = 1;
|
---|
| 860 | state.ytbl = new double[1, n];
|
---|
| 861 | for(i_=0; i_<=n-1;i_++)
|
---|
| 862 | {
|
---|
| 863 | state.ytbl[0,i_] = y[i_];
|
---|
| 864 | }
|
---|
| 865 | state.xg = new double[m];
|
---|
| 866 | for(i_=0; i_<=m-1;i_++)
|
---|
| 867 | {
|
---|
| 868 | state.xg[i_] = x[i_];
|
---|
| 869 | }
|
---|
| 870 | return;
|
---|
| 871 | }
|
---|
| 872 |
|
---|
| 873 | //
|
---|
| 874 | // check again: correct order of X[]
|
---|
| 875 | //
|
---|
| 876 | if( (double)(x[1])==(double)(x[0]) )
|
---|
| 877 | {
|
---|
| 878 | state.repterminationtype = -2;
|
---|
| 879 | return;
|
---|
| 880 | }
|
---|
| 881 | for(i=1; i<=m-1; i++)
|
---|
| 882 | {
|
---|
| 883 | if( ((double)(x[1])>(double)(x[0]) & (double)(x[i])<=(double)(x[i-1])) | ((double)(x[1])<(double)(x[0]) & (double)(x[i])>=(double)(x[i-1])) )
|
---|
| 884 | {
|
---|
| 885 | state.repterminationtype = -2;
|
---|
| 886 | return;
|
---|
| 887 | }
|
---|
| 888 | }
|
---|
| 889 |
|
---|
| 890 | //
|
---|
| 891 | // auto-select H if necessary
|
---|
| 892 | //
|
---|
| 893 | if( (double)(h)==(double)(0) )
|
---|
| 894 | {
|
---|
| 895 | v = Math.Abs(x[1]-x[0]);
|
---|
| 896 | for(i=2; i<=m-1; i++)
|
---|
| 897 | {
|
---|
| 898 | v = Math.Min(v, Math.Abs(x[i]-x[i-1]));
|
---|
| 899 | }
|
---|
| 900 | h = 0.001*v;
|
---|
| 901 | }
|
---|
| 902 |
|
---|
| 903 | //
|
---|
| 904 | // store parameters
|
---|
| 905 | //
|
---|
| 906 | state.n = n;
|
---|
| 907 | state.m = m;
|
---|
| 908 | state.h = h;
|
---|
| 909 | state.eps = Math.Abs(eps);
|
---|
| 910 | state.fraceps = (double)(eps)<(double)(0);
|
---|
| 911 | state.xg = new double[m];
|
---|
| 912 | for(i_=0; i_<=m-1;i_++)
|
---|
| 913 | {
|
---|
| 914 | state.xg[i_] = x[i_];
|
---|
| 915 | }
|
---|
| 916 | if( (double)(x[1])>(double)(x[0]) )
|
---|
| 917 | {
|
---|
| 918 | state.xscale = 1;
|
---|
| 919 | }
|
---|
| 920 | else
|
---|
| 921 | {
|
---|
| 922 | state.xscale = -1;
|
---|
| 923 | for(i_=0; i_<=m-1;i_++)
|
---|
| 924 | {
|
---|
| 925 | state.xg[i_] = -1*state.xg[i_];
|
---|
| 926 | }
|
---|
| 927 | }
|
---|
| 928 | state.yc = new double[n];
|
---|
| 929 | for(i_=0; i_<=n-1;i_++)
|
---|
| 930 | {
|
---|
| 931 | state.yc[i_] = y[i_];
|
---|
| 932 | }
|
---|
| 933 | state.solvertype = solvertype;
|
---|
| 934 | state.repterminationtype = 0;
|
---|
[7294] | 935 |
|
---|
| 936 | //
|
---|
| 937 | // Allocate arrays
|
---|
| 938 | //
|
---|
| 939 | state.y = new double[n];
|
---|
| 940 | state.dy = new double[n];
|
---|
[4977] | 941 | }
|
---|
| 942 |
|
---|
| 943 |
|
---|
| 944 | }
|
---|
| 945 | }
|
---|
| 946 |
|
---|