1 | /*************************************************************************
|
---|
2 | Copyright (c) Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 | >>> END OF LICENSE >>>
|
---|
18 | *************************************************************************/
|
---|
19 | #pragma warning disable 162
|
---|
20 | #pragma warning disable 219
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | public partial class alglib
|
---|
24 | {
|
---|
25 |
|
---|
26 |
|
---|
27 | /*************************************************************************
|
---|
28 |
|
---|
29 | *************************************************************************/
|
---|
30 | public class odesolverstate
|
---|
31 | {
|
---|
32 | //
|
---|
33 | // Public declarations
|
---|
34 | //
|
---|
35 | public bool needdy { get { return _innerobj.needdy; } set { _innerobj.needdy = value; } }
|
---|
36 | public double[] y { get { return _innerobj.y; } }
|
---|
37 | public double[] dy { get { return _innerobj.dy; } }
|
---|
38 | public double x { get { return _innerobj.x; } set { _innerobj.x = value; } }
|
---|
39 |
|
---|
40 | public odesolverstate()
|
---|
41 | {
|
---|
42 | _innerobj = new odesolver.odesolverstate();
|
---|
43 | }
|
---|
44 |
|
---|
45 | //
|
---|
46 | // Although some of declarations below are public, you should not use them
|
---|
47 | // They are intended for internal use only
|
---|
48 | //
|
---|
49 | private odesolver.odesolverstate _innerobj;
|
---|
50 | public odesolver.odesolverstate innerobj { get { return _innerobj; } }
|
---|
51 | public odesolverstate(odesolver.odesolverstate obj)
|
---|
52 | {
|
---|
53 | _innerobj = obj;
|
---|
54 | }
|
---|
55 | }
|
---|
56 |
|
---|
57 |
|
---|
58 | /*************************************************************************
|
---|
59 |
|
---|
60 | *************************************************************************/
|
---|
61 | public class odesolverreport
|
---|
62 | {
|
---|
63 | //
|
---|
64 | // Public declarations
|
---|
65 | //
|
---|
66 | public int nfev { get { return _innerobj.nfev; } set { _innerobj.nfev = value; } }
|
---|
67 | public int terminationtype { get { return _innerobj.terminationtype; } set { _innerobj.terminationtype = value; } }
|
---|
68 |
|
---|
69 | public odesolverreport()
|
---|
70 | {
|
---|
71 | _innerobj = new odesolver.odesolverreport();
|
---|
72 | }
|
---|
73 |
|
---|
74 | //
|
---|
75 | // Although some of declarations below are public, you should not use them
|
---|
76 | // They are intended for internal use only
|
---|
77 | //
|
---|
78 | private odesolver.odesolverreport _innerobj;
|
---|
79 | public odesolver.odesolverreport innerobj { get { return _innerobj; } }
|
---|
80 | public odesolverreport(odesolver.odesolverreport obj)
|
---|
81 | {
|
---|
82 | _innerobj = obj;
|
---|
83 | }
|
---|
84 | }
|
---|
85 |
|
---|
86 | /*************************************************************************
|
---|
87 | Cash-Karp adaptive ODE solver.
|
---|
88 |
|
---|
89 | This subroutine solves ODE Y'=f(Y,x) with initial conditions Y(xs)=Ys
|
---|
90 | (here Y may be single variable or vector of N variables).
|
---|
91 |
|
---|
92 | INPUT PARAMETERS:
|
---|
93 | Y - initial conditions, array[0..N-1].
|
---|
94 | contains values of Y[] at X[0]
|
---|
95 | N - system size
|
---|
96 | X - points at which Y should be tabulated, array[0..M-1]
|
---|
97 | integrations starts at X[0], ends at X[M-1], intermediate
|
---|
98 | values at X[i] are returned too.
|
---|
99 | SHOULD BE ORDERED BY ASCENDING OR BY DESCENDING!!!!
|
---|
100 | M - number of intermediate points + first point + last point:
|
---|
101 | * M>2 means that you need both Y(X[M-1]) and M-2 values at
|
---|
102 | intermediate points
|
---|
103 | * M=2 means that you want just to integrate from X[0] to
|
---|
104 | X[1] and don't interested in intermediate values.
|
---|
105 | * M=1 means that you don't want to integrate :)
|
---|
106 | it is degenerate case, but it will be handled correctly.
|
---|
107 | * M<1 means error
|
---|
108 | Eps - tolerance (absolute/relative error on each step will be
|
---|
109 | less than Eps). When passing:
|
---|
110 | * Eps>0, it means desired ABSOLUTE error
|
---|
111 | * Eps<0, it means desired RELATIVE error. Relative errors
|
---|
112 | are calculated with respect to maximum values of Y seen
|
---|
113 | so far. Be careful to use this criterion when starting
|
---|
114 | from Y[] that are close to zero.
|
---|
115 | H - initial step lenth, it will be adjusted automatically
|
---|
116 | after the first step. If H=0, step will be selected
|
---|
117 | automatically (usualy it will be equal to 0.001 of
|
---|
118 | min(x[i]-x[j])).
|
---|
119 |
|
---|
120 | OUTPUT PARAMETERS
|
---|
121 | State - structure which stores algorithm state between subsequent
|
---|
122 | calls of OdeSolverIteration. Used for reverse communication.
|
---|
123 | This structure should be passed to the OdeSolverIteration
|
---|
124 | subroutine.
|
---|
125 |
|
---|
126 | SEE ALSO
|
---|
127 | AutoGKSmoothW, AutoGKSingular, AutoGKIteration, AutoGKResults.
|
---|
128 |
|
---|
129 |
|
---|
130 | -- ALGLIB --
|
---|
131 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
132 | *************************************************************************/
|
---|
133 | public static void odesolverrkck(double[] y, int n, double[] x, int m, double eps, double h, out odesolverstate state)
|
---|
134 | {
|
---|
135 | state = new odesolverstate();
|
---|
136 | odesolver.odesolverrkck(y, n, x, m, eps, h, state.innerobj);
|
---|
137 | return;
|
---|
138 | }
|
---|
139 | public static void odesolverrkck(double[] y, double[] x, double eps, double h, out odesolverstate state)
|
---|
140 | {
|
---|
141 | int n;
|
---|
142 | int m;
|
---|
143 |
|
---|
144 | state = new odesolverstate();
|
---|
145 | n = ap.len(y);
|
---|
146 | m = ap.len(x);
|
---|
147 | odesolver.odesolverrkck(y, n, x, m, eps, h, state.innerobj);
|
---|
148 |
|
---|
149 | return;
|
---|
150 | }
|
---|
151 |
|
---|
152 | /*************************************************************************
|
---|
153 | This function provides reverse communication interface
|
---|
154 | Reverse communication interface is not documented or recommended to use.
|
---|
155 | See below for functions which provide better documented API
|
---|
156 | *************************************************************************/
|
---|
157 | public static bool odesolveriteration(odesolverstate state)
|
---|
158 | {
|
---|
159 |
|
---|
160 | bool result = odesolver.odesolveriteration(state.innerobj);
|
---|
161 | return result;
|
---|
162 | }
|
---|
163 | /*************************************************************************
|
---|
164 | This function is used to launcn iterations of ODE solver
|
---|
165 |
|
---|
166 | It accepts following parameters:
|
---|
167 | diff - callback which calculates dy/dx for given y and x
|
---|
168 | obj - optional object which is passed to diff; can be NULL
|
---|
169 |
|
---|
170 | One iteration of ODE solver.
|
---|
171 |
|
---|
172 | Called after inialization of State structure with OdeSolverXXX subroutine.
|
---|
173 | See HTML docs for examples.
|
---|
174 |
|
---|
175 | INPUT PARAMETERS:
|
---|
176 | State - structure which stores algorithm state between subsequent
|
---|
177 | calls and which is used for reverse communication. Must be
|
---|
178 | initialized with OdeSolverXXX() call first.
|
---|
179 |
|
---|
180 | If subroutine returned False, algorithm have finished its work.
|
---|
181 | If subroutine returned True, then user should:
|
---|
182 | * calculate F(State.X, State.Y)
|
---|
183 | * store it in State.DY
|
---|
184 | Here State.X is real, State.Y and State.DY are arrays[0..N-1] of reals.
|
---|
185 |
|
---|
186 | -- ALGLIB --
|
---|
187 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
188 |
|
---|
189 | *************************************************************************/
|
---|
190 | public static void odesolversolve(odesolverstate state, ndimensional_ode_rp diff, object obj)
|
---|
191 | {
|
---|
192 | if( diff==null )
|
---|
193 | throw new alglibexception("ALGLIB: error in 'odesolversolve()' (diff is null)");
|
---|
194 | while( alglib.odesolveriteration(state) )
|
---|
195 | {
|
---|
196 | if( state.needdy )
|
---|
197 | {
|
---|
198 | diff(state.innerobj.y, state.innerobj.x, state.innerobj.dy, obj);
|
---|
199 | continue;
|
---|
200 | }
|
---|
201 | throw new alglibexception("ALGLIB: unexpected error in 'odesolversolve'");
|
---|
202 | }
|
---|
203 | }
|
---|
204 |
|
---|
205 |
|
---|
206 |
|
---|
207 | /*************************************************************************
|
---|
208 | ODE solver results
|
---|
209 |
|
---|
210 | Called after OdeSolverIteration returned False.
|
---|
211 |
|
---|
212 | INPUT PARAMETERS:
|
---|
213 | State - algorithm state (used by OdeSolverIteration).
|
---|
214 |
|
---|
215 | OUTPUT PARAMETERS:
|
---|
216 | M - number of tabulated values, M>=1
|
---|
217 | XTbl - array[0..M-1], values of X
|
---|
218 | YTbl - array[0..M-1,0..N-1], values of Y in X[i]
|
---|
219 | Rep - solver report:
|
---|
220 | * Rep.TerminationType completetion code:
|
---|
221 | * -2 X is not ordered by ascending/descending or
|
---|
222 | there are non-distinct X[], i.e. X[i]=X[i+1]
|
---|
223 | * -1 incorrect parameters were specified
|
---|
224 | * 1 task has been solved
|
---|
225 | * Rep.NFEV contains number of function calculations
|
---|
226 |
|
---|
227 | -- ALGLIB --
|
---|
228 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
229 | *************************************************************************/
|
---|
230 | public static void odesolverresults(odesolverstate state, out int m, out double[] xtbl, out double[,] ytbl, out odesolverreport rep)
|
---|
231 | {
|
---|
232 | m = 0;
|
---|
233 | xtbl = new double[0];
|
---|
234 | ytbl = new double[0,0];
|
---|
235 | rep = new odesolverreport();
|
---|
236 | odesolver.odesolverresults(state.innerobj, ref m, ref xtbl, ref ytbl, rep.innerobj);
|
---|
237 | return;
|
---|
238 | }
|
---|
239 |
|
---|
240 | }
|
---|
241 | public partial class alglib
|
---|
242 | {
|
---|
243 | public class odesolver
|
---|
244 | {
|
---|
245 | public class odesolverstate
|
---|
246 | {
|
---|
247 | public int n;
|
---|
248 | public int m;
|
---|
249 | public double xscale;
|
---|
250 | public double h;
|
---|
251 | public double eps;
|
---|
252 | public bool fraceps;
|
---|
253 | public double[] yc;
|
---|
254 | public double[] escale;
|
---|
255 | public double[] xg;
|
---|
256 | public int solvertype;
|
---|
257 | public bool needdy;
|
---|
258 | public double x;
|
---|
259 | public double[] y;
|
---|
260 | public double[] dy;
|
---|
261 | public double[,] ytbl;
|
---|
262 | public int repterminationtype;
|
---|
263 | public int repnfev;
|
---|
264 | public double[] yn;
|
---|
265 | public double[] yns;
|
---|
266 | public double[] rka;
|
---|
267 | public double[] rkc;
|
---|
268 | public double[] rkcs;
|
---|
269 | public double[,] rkb;
|
---|
270 | public double[,] rkk;
|
---|
271 | public rcommstate rstate;
|
---|
272 | public odesolverstate()
|
---|
273 | {
|
---|
274 | yc = new double[0];
|
---|
275 | escale = new double[0];
|
---|
276 | xg = new double[0];
|
---|
277 | y = new double[0];
|
---|
278 | dy = new double[0];
|
---|
279 | ytbl = new double[0,0];
|
---|
280 | yn = new double[0];
|
---|
281 | yns = new double[0];
|
---|
282 | rka = new double[0];
|
---|
283 | rkc = new double[0];
|
---|
284 | rkcs = new double[0];
|
---|
285 | rkb = new double[0,0];
|
---|
286 | rkk = new double[0,0];
|
---|
287 | rstate = new rcommstate();
|
---|
288 | }
|
---|
289 | };
|
---|
290 |
|
---|
291 |
|
---|
292 | public class odesolverreport
|
---|
293 | {
|
---|
294 | public int nfev;
|
---|
295 | public int terminationtype;
|
---|
296 | };
|
---|
297 |
|
---|
298 |
|
---|
299 |
|
---|
300 |
|
---|
301 | public const double odesolvermaxgrow = 3.0;
|
---|
302 | public const double odesolvermaxshrink = 10.0;
|
---|
303 |
|
---|
304 |
|
---|
305 | /*************************************************************************
|
---|
306 | Cash-Karp adaptive ODE solver.
|
---|
307 |
|
---|
308 | This subroutine solves ODE Y'=f(Y,x) with initial conditions Y(xs)=Ys
|
---|
309 | (here Y may be single variable or vector of N variables).
|
---|
310 |
|
---|
311 | INPUT PARAMETERS:
|
---|
312 | Y - initial conditions, array[0..N-1].
|
---|
313 | contains values of Y[] at X[0]
|
---|
314 | N - system size
|
---|
315 | X - points at which Y should be tabulated, array[0..M-1]
|
---|
316 | integrations starts at X[0], ends at X[M-1], intermediate
|
---|
317 | values at X[i] are returned too.
|
---|
318 | SHOULD BE ORDERED BY ASCENDING OR BY DESCENDING!!!!
|
---|
319 | M - number of intermediate points + first point + last point:
|
---|
320 | * M>2 means that you need both Y(X[M-1]) and M-2 values at
|
---|
321 | intermediate points
|
---|
322 | * M=2 means that you want just to integrate from X[0] to
|
---|
323 | X[1] and don't interested in intermediate values.
|
---|
324 | * M=1 means that you don't want to integrate :)
|
---|
325 | it is degenerate case, but it will be handled correctly.
|
---|
326 | * M<1 means error
|
---|
327 | Eps - tolerance (absolute/relative error on each step will be
|
---|
328 | less than Eps). When passing:
|
---|
329 | * Eps>0, it means desired ABSOLUTE error
|
---|
330 | * Eps<0, it means desired RELATIVE error. Relative errors
|
---|
331 | are calculated with respect to maximum values of Y seen
|
---|
332 | so far. Be careful to use this criterion when starting
|
---|
333 | from Y[] that are close to zero.
|
---|
334 | H - initial step lenth, it will be adjusted automatically
|
---|
335 | after the first step. If H=0, step will be selected
|
---|
336 | automatically (usualy it will be equal to 0.001 of
|
---|
337 | min(x[i]-x[j])).
|
---|
338 |
|
---|
339 | OUTPUT PARAMETERS
|
---|
340 | State - structure which stores algorithm state between subsequent
|
---|
341 | calls of OdeSolverIteration. Used for reverse communication.
|
---|
342 | This structure should be passed to the OdeSolverIteration
|
---|
343 | subroutine.
|
---|
344 |
|
---|
345 | SEE ALSO
|
---|
346 | AutoGKSmoothW, AutoGKSingular, AutoGKIteration, AutoGKResults.
|
---|
347 |
|
---|
348 |
|
---|
349 | -- ALGLIB --
|
---|
350 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
351 | *************************************************************************/
|
---|
352 | public static void odesolverrkck(double[] y,
|
---|
353 | int n,
|
---|
354 | double[] x,
|
---|
355 | int m,
|
---|
356 | double eps,
|
---|
357 | double h,
|
---|
358 | odesolverstate state)
|
---|
359 | {
|
---|
360 | ap.assert(n>=1, "ODESolverRKCK: N<1!");
|
---|
361 | ap.assert(m>=1, "ODESolverRKCK: M<1!");
|
---|
362 | ap.assert(ap.len(y)>=n, "ODESolverRKCK: Length(Y)<N!");
|
---|
363 | ap.assert(ap.len(x)>=m, "ODESolverRKCK: Length(X)<M!");
|
---|
364 | ap.assert(apserv.isfinitevector(y, n), "ODESolverRKCK: Y contains infinite or NaN values!");
|
---|
365 | ap.assert(apserv.isfinitevector(x, m), "ODESolverRKCK: Y contains infinite or NaN values!");
|
---|
366 | ap.assert(math.isfinite(eps), "ODESolverRKCK: Eps is not finite!");
|
---|
367 | ap.assert((double)(eps)!=(double)(0), "ODESolverRKCK: Eps is zero!");
|
---|
368 | ap.assert(math.isfinite(h), "ODESolverRKCK: H is not finite!");
|
---|
369 | odesolverinit(0, y, n, x, m, eps, h, state);
|
---|
370 | }
|
---|
371 |
|
---|
372 |
|
---|
373 | /*************************************************************************
|
---|
374 | One iteration of ODE solver.
|
---|
375 |
|
---|
376 | Called after inialization of State structure with OdeSolverXXX subroutine.
|
---|
377 | See HTML docs for examples.
|
---|
378 |
|
---|
379 | INPUT PARAMETERS:
|
---|
380 | State - structure which stores algorithm state between subsequent
|
---|
381 | calls and which is used for reverse communication. Must be
|
---|
382 | initialized with OdeSolverXXX() call first.
|
---|
383 |
|
---|
384 | If subroutine returned False, algorithm have finished its work.
|
---|
385 | If subroutine returned True, then user should:
|
---|
386 | * calculate F(State.X, State.Y)
|
---|
387 | * store it in State.DY
|
---|
388 | Here State.X is real, State.Y and State.DY are arrays[0..N-1] of reals.
|
---|
389 |
|
---|
390 | -- ALGLIB --
|
---|
391 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
392 | *************************************************************************/
|
---|
393 | public static bool odesolveriteration(odesolverstate state)
|
---|
394 | {
|
---|
395 | bool result = new bool();
|
---|
396 | int n = 0;
|
---|
397 | int m = 0;
|
---|
398 | int i = 0;
|
---|
399 | int j = 0;
|
---|
400 | int k = 0;
|
---|
401 | double xc = 0;
|
---|
402 | double v = 0;
|
---|
403 | double h = 0;
|
---|
404 | double h2 = 0;
|
---|
405 | bool gridpoint = new bool();
|
---|
406 | double err = 0;
|
---|
407 | double maxgrowpow = 0;
|
---|
408 | int klimit = 0;
|
---|
409 | int i_ = 0;
|
---|
410 |
|
---|
411 |
|
---|
412 | //
|
---|
413 | // Reverse communication preparations
|
---|
414 | // I know it looks ugly, but it works the same way
|
---|
415 | // anywhere from C++ to Python.
|
---|
416 | //
|
---|
417 | // This code initializes locals by:
|
---|
418 | // * random values determined during code
|
---|
419 | // generation - on first subroutine call
|
---|
420 | // * values from previous call - on subsequent calls
|
---|
421 | //
|
---|
422 | if( state.rstate.stage>=0 )
|
---|
423 | {
|
---|
424 | n = state.rstate.ia[0];
|
---|
425 | m = state.rstate.ia[1];
|
---|
426 | i = state.rstate.ia[2];
|
---|
427 | j = state.rstate.ia[3];
|
---|
428 | k = state.rstate.ia[4];
|
---|
429 | klimit = state.rstate.ia[5];
|
---|
430 | gridpoint = state.rstate.ba[0];
|
---|
431 | xc = state.rstate.ra[0];
|
---|
432 | v = state.rstate.ra[1];
|
---|
433 | h = state.rstate.ra[2];
|
---|
434 | h2 = state.rstate.ra[3];
|
---|
435 | err = state.rstate.ra[4];
|
---|
436 | maxgrowpow = state.rstate.ra[5];
|
---|
437 | }
|
---|
438 | else
|
---|
439 | {
|
---|
440 | n = -983;
|
---|
441 | m = -989;
|
---|
442 | i = -834;
|
---|
443 | j = 900;
|
---|
444 | k = -287;
|
---|
445 | klimit = 364;
|
---|
446 | gridpoint = false;
|
---|
447 | xc = -338;
|
---|
448 | v = -686;
|
---|
449 | h = 912;
|
---|
450 | h2 = 585;
|
---|
451 | err = 497;
|
---|
452 | maxgrowpow = -271;
|
---|
453 | }
|
---|
454 | if( state.rstate.stage==0 )
|
---|
455 | {
|
---|
456 | goto lbl_0;
|
---|
457 | }
|
---|
458 |
|
---|
459 | //
|
---|
460 | // Routine body
|
---|
461 | //
|
---|
462 |
|
---|
463 | //
|
---|
464 | // prepare
|
---|
465 | //
|
---|
466 | if( state.repterminationtype!=0 )
|
---|
467 | {
|
---|
468 | result = false;
|
---|
469 | return result;
|
---|
470 | }
|
---|
471 | n = state.n;
|
---|
472 | m = state.m;
|
---|
473 | h = state.h;
|
---|
474 | state.y = new double[n];
|
---|
475 | state.dy = new double[n];
|
---|
476 | maxgrowpow = Math.Pow(odesolvermaxgrow, 5);
|
---|
477 | state.repnfev = 0;
|
---|
478 |
|
---|
479 | //
|
---|
480 | // some preliminary checks for internal errors
|
---|
481 | // after this we assume that H>0 and M>1
|
---|
482 | //
|
---|
483 | ap.assert((double)(state.h)>(double)(0), "ODESolver: internal error");
|
---|
484 | ap.assert(m>1, "ODESolverIteration: internal error");
|
---|
485 |
|
---|
486 | //
|
---|
487 | // choose solver
|
---|
488 | //
|
---|
489 | if( state.solvertype!=0 )
|
---|
490 | {
|
---|
491 | goto lbl_1;
|
---|
492 | }
|
---|
493 |
|
---|
494 | //
|
---|
495 | // Cask-Karp solver
|
---|
496 | // Prepare coefficients table.
|
---|
497 | // Check it for errors
|
---|
498 | //
|
---|
499 | state.rka = new double[6];
|
---|
500 | state.rka[0] = 0;
|
---|
501 | state.rka[1] = (double)1/(double)5;
|
---|
502 | state.rka[2] = (double)3/(double)10;
|
---|
503 | state.rka[3] = (double)3/(double)5;
|
---|
504 | state.rka[4] = 1;
|
---|
505 | state.rka[5] = (double)7/(double)8;
|
---|
506 | state.rkb = new double[6, 5];
|
---|
507 | state.rkb[1,0] = (double)1/(double)5;
|
---|
508 | state.rkb[2,0] = (double)3/(double)40;
|
---|
509 | state.rkb[2,1] = (double)9/(double)40;
|
---|
510 | state.rkb[3,0] = (double)3/(double)10;
|
---|
511 | state.rkb[3,1] = -((double)9/(double)10);
|
---|
512 | state.rkb[3,2] = (double)6/(double)5;
|
---|
513 | state.rkb[4,0] = -((double)11/(double)54);
|
---|
514 | state.rkb[4,1] = (double)5/(double)2;
|
---|
515 | state.rkb[4,2] = -((double)70/(double)27);
|
---|
516 | state.rkb[4,3] = (double)35/(double)27;
|
---|
517 | state.rkb[5,0] = (double)1631/(double)55296;
|
---|
518 | state.rkb[5,1] = (double)175/(double)512;
|
---|
519 | state.rkb[5,2] = (double)575/(double)13824;
|
---|
520 | state.rkb[5,3] = (double)44275/(double)110592;
|
---|
521 | state.rkb[5,4] = (double)253/(double)4096;
|
---|
522 | state.rkc = new double[6];
|
---|
523 | state.rkc[0] = (double)37/(double)378;
|
---|
524 | state.rkc[1] = 0;
|
---|
525 | state.rkc[2] = (double)250/(double)621;
|
---|
526 | state.rkc[3] = (double)125/(double)594;
|
---|
527 | state.rkc[4] = 0;
|
---|
528 | state.rkc[5] = (double)512/(double)1771;
|
---|
529 | state.rkcs = new double[6];
|
---|
530 | state.rkcs[0] = (double)2825/(double)27648;
|
---|
531 | state.rkcs[1] = 0;
|
---|
532 | state.rkcs[2] = (double)18575/(double)48384;
|
---|
533 | state.rkcs[3] = (double)13525/(double)55296;
|
---|
534 | state.rkcs[4] = (double)277/(double)14336;
|
---|
535 | state.rkcs[5] = (double)1/(double)4;
|
---|
536 | state.rkk = new double[6, n];
|
---|
537 |
|
---|
538 | //
|
---|
539 | // Main cycle consists of two iterations:
|
---|
540 | // * outer where we travel from X[i-1] to X[i]
|
---|
541 | // * inner where we travel inside [X[i-1],X[i]]
|
---|
542 | //
|
---|
543 | state.ytbl = new double[m, n];
|
---|
544 | state.escale = new double[n];
|
---|
545 | state.yn = new double[n];
|
---|
546 | state.yns = new double[n];
|
---|
547 | xc = state.xg[0];
|
---|
548 | for(i_=0; i_<=n-1;i_++)
|
---|
549 | {
|
---|
550 | state.ytbl[0,i_] = state.yc[i_];
|
---|
551 | }
|
---|
552 | for(j=0; j<=n-1; j++)
|
---|
553 | {
|
---|
554 | state.escale[j] = 0;
|
---|
555 | }
|
---|
556 | i = 1;
|
---|
557 | lbl_3:
|
---|
558 | if( i>m-1 )
|
---|
559 | {
|
---|
560 | goto lbl_5;
|
---|
561 | }
|
---|
562 |
|
---|
563 | //
|
---|
564 | // begin inner iteration
|
---|
565 | //
|
---|
566 | lbl_6:
|
---|
567 | if( false )
|
---|
568 | {
|
---|
569 | goto lbl_7;
|
---|
570 | }
|
---|
571 |
|
---|
572 | //
|
---|
573 | // truncate step if needed (beyond right boundary).
|
---|
574 | // determine should we store X or not
|
---|
575 | //
|
---|
576 | if( (double)(xc+h)>=(double)(state.xg[i]) )
|
---|
577 | {
|
---|
578 | h = state.xg[i]-xc;
|
---|
579 | gridpoint = true;
|
---|
580 | }
|
---|
581 | else
|
---|
582 | {
|
---|
583 | gridpoint = false;
|
---|
584 | }
|
---|
585 |
|
---|
586 | //
|
---|
587 | // Update error scale maximums
|
---|
588 | //
|
---|
589 | // These maximums are initialized by zeros,
|
---|
590 | // then updated every iterations.
|
---|
591 | //
|
---|
592 | for(j=0; j<=n-1; j++)
|
---|
593 | {
|
---|
594 | state.escale[j] = Math.Max(state.escale[j], Math.Abs(state.yc[j]));
|
---|
595 | }
|
---|
596 |
|
---|
597 | //
|
---|
598 | // make one step:
|
---|
599 | // 1. calculate all info needed to do step
|
---|
600 | // 2. update errors scale maximums using values/derivatives
|
---|
601 | // obtained during (1)
|
---|
602 | //
|
---|
603 | // Take into account that we use scaling of X to reduce task
|
---|
604 | // to the form where x[0] < x[1] < ... < x[n-1]. So X is
|
---|
605 | // replaced by x=xscale*t, and dy/dx=f(y,x) is replaced
|
---|
606 | // by dy/dt=xscale*f(y,xscale*t).
|
---|
607 | //
|
---|
608 | for(i_=0; i_<=n-1;i_++)
|
---|
609 | {
|
---|
610 | state.yn[i_] = state.yc[i_];
|
---|
611 | }
|
---|
612 | for(i_=0; i_<=n-1;i_++)
|
---|
613 | {
|
---|
614 | state.yns[i_] = state.yc[i_];
|
---|
615 | }
|
---|
616 | k = 0;
|
---|
617 | lbl_8:
|
---|
618 | if( k>5 )
|
---|
619 | {
|
---|
620 | goto lbl_10;
|
---|
621 | }
|
---|
622 |
|
---|
623 | //
|
---|
624 | // prepare data for the next update of YN/YNS
|
---|
625 | //
|
---|
626 | state.x = state.xscale*(xc+state.rka[k]*h);
|
---|
627 | for(i_=0; i_<=n-1;i_++)
|
---|
628 | {
|
---|
629 | state.y[i_] = state.yc[i_];
|
---|
630 | }
|
---|
631 | for(j=0; j<=k-1; j++)
|
---|
632 | {
|
---|
633 | v = state.rkb[k,j];
|
---|
634 | for(i_=0; i_<=n-1;i_++)
|
---|
635 | {
|
---|
636 | state.y[i_] = state.y[i_] + v*state.rkk[j,i_];
|
---|
637 | }
|
---|
638 | }
|
---|
639 | state.needdy = true;
|
---|
640 | state.rstate.stage = 0;
|
---|
641 | goto lbl_rcomm;
|
---|
642 | lbl_0:
|
---|
643 | state.needdy = false;
|
---|
644 | state.repnfev = state.repnfev+1;
|
---|
645 | v = h*state.xscale;
|
---|
646 | for(i_=0; i_<=n-1;i_++)
|
---|
647 | {
|
---|
648 | state.rkk[k,i_] = v*state.dy[i_];
|
---|
649 | }
|
---|
650 |
|
---|
651 | //
|
---|
652 | // update YN/YNS
|
---|
653 | //
|
---|
654 | v = state.rkc[k];
|
---|
655 | for(i_=0; i_<=n-1;i_++)
|
---|
656 | {
|
---|
657 | state.yn[i_] = state.yn[i_] + v*state.rkk[k,i_];
|
---|
658 | }
|
---|
659 | v = state.rkcs[k];
|
---|
660 | for(i_=0; i_<=n-1;i_++)
|
---|
661 | {
|
---|
662 | state.yns[i_] = state.yns[i_] + v*state.rkk[k,i_];
|
---|
663 | }
|
---|
664 | k = k+1;
|
---|
665 | goto lbl_8;
|
---|
666 | lbl_10:
|
---|
667 |
|
---|
668 | //
|
---|
669 | // estimate error
|
---|
670 | //
|
---|
671 | err = 0;
|
---|
672 | for(j=0; j<=n-1; j++)
|
---|
673 | {
|
---|
674 | if( !state.fraceps )
|
---|
675 | {
|
---|
676 |
|
---|
677 | //
|
---|
678 | // absolute error is estimated
|
---|
679 | //
|
---|
680 | err = Math.Max(err, Math.Abs(state.yn[j]-state.yns[j]));
|
---|
681 | }
|
---|
682 | else
|
---|
683 | {
|
---|
684 |
|
---|
685 | //
|
---|
686 | // Relative error is estimated
|
---|
687 | //
|
---|
688 | v = state.escale[j];
|
---|
689 | if( (double)(v)==(double)(0) )
|
---|
690 | {
|
---|
691 | v = 1;
|
---|
692 | }
|
---|
693 | err = Math.Max(err, Math.Abs(state.yn[j]-state.yns[j])/v);
|
---|
694 | }
|
---|
695 | }
|
---|
696 |
|
---|
697 | //
|
---|
698 | // calculate new step, restart if necessary
|
---|
699 | //
|
---|
700 | if( (double)(maxgrowpow*err)<=(double)(state.eps) )
|
---|
701 | {
|
---|
702 | h2 = odesolvermaxgrow*h;
|
---|
703 | }
|
---|
704 | else
|
---|
705 | {
|
---|
706 | h2 = h*Math.Pow(state.eps/err, 0.2);
|
---|
707 | }
|
---|
708 | if( (double)(h2)<(double)(h/odesolvermaxshrink) )
|
---|
709 | {
|
---|
710 | h2 = h/odesolvermaxshrink;
|
---|
711 | }
|
---|
712 | if( (double)(err)>(double)(state.eps) )
|
---|
713 | {
|
---|
714 | h = h2;
|
---|
715 | goto lbl_6;
|
---|
716 | }
|
---|
717 |
|
---|
718 | //
|
---|
719 | // advance position
|
---|
720 | //
|
---|
721 | xc = xc+h;
|
---|
722 | for(i_=0; i_<=n-1;i_++)
|
---|
723 | {
|
---|
724 | state.yc[i_] = state.yn[i_];
|
---|
725 | }
|
---|
726 |
|
---|
727 | //
|
---|
728 | // update H
|
---|
729 | //
|
---|
730 | h = h2;
|
---|
731 |
|
---|
732 | //
|
---|
733 | // break on grid point
|
---|
734 | //
|
---|
735 | if( gridpoint )
|
---|
736 | {
|
---|
737 | goto lbl_7;
|
---|
738 | }
|
---|
739 | goto lbl_6;
|
---|
740 | lbl_7:
|
---|
741 |
|
---|
742 | //
|
---|
743 | // save result
|
---|
744 | //
|
---|
745 | for(i_=0; i_<=n-1;i_++)
|
---|
746 | {
|
---|
747 | state.ytbl[i,i_] = state.yc[i_];
|
---|
748 | }
|
---|
749 | i = i+1;
|
---|
750 | goto lbl_3;
|
---|
751 | lbl_5:
|
---|
752 | state.repterminationtype = 1;
|
---|
753 | result = false;
|
---|
754 | return result;
|
---|
755 | lbl_1:
|
---|
756 | result = false;
|
---|
757 | return result;
|
---|
758 |
|
---|
759 | //
|
---|
760 | // Saving state
|
---|
761 | //
|
---|
762 | lbl_rcomm:
|
---|
763 | result = true;
|
---|
764 | state.rstate.ia[0] = n;
|
---|
765 | state.rstate.ia[1] = m;
|
---|
766 | state.rstate.ia[2] = i;
|
---|
767 | state.rstate.ia[3] = j;
|
---|
768 | state.rstate.ia[4] = k;
|
---|
769 | state.rstate.ia[5] = klimit;
|
---|
770 | state.rstate.ba[0] = gridpoint;
|
---|
771 | state.rstate.ra[0] = xc;
|
---|
772 | state.rstate.ra[1] = v;
|
---|
773 | state.rstate.ra[2] = h;
|
---|
774 | state.rstate.ra[3] = h2;
|
---|
775 | state.rstate.ra[4] = err;
|
---|
776 | state.rstate.ra[5] = maxgrowpow;
|
---|
777 | return result;
|
---|
778 | }
|
---|
779 |
|
---|
780 |
|
---|
781 | /*************************************************************************
|
---|
782 | ODE solver results
|
---|
783 |
|
---|
784 | Called after OdeSolverIteration returned False.
|
---|
785 |
|
---|
786 | INPUT PARAMETERS:
|
---|
787 | State - algorithm state (used by OdeSolverIteration).
|
---|
788 |
|
---|
789 | OUTPUT PARAMETERS:
|
---|
790 | M - number of tabulated values, M>=1
|
---|
791 | XTbl - array[0..M-1], values of X
|
---|
792 | YTbl - array[0..M-1,0..N-1], values of Y in X[i]
|
---|
793 | Rep - solver report:
|
---|
794 | * Rep.TerminationType completetion code:
|
---|
795 | * -2 X is not ordered by ascending/descending or
|
---|
796 | there are non-distinct X[], i.e. X[i]=X[i+1]
|
---|
797 | * -1 incorrect parameters were specified
|
---|
798 | * 1 task has been solved
|
---|
799 | * Rep.NFEV contains number of function calculations
|
---|
800 |
|
---|
801 | -- ALGLIB --
|
---|
802 | Copyright 01.09.2009 by Bochkanov Sergey
|
---|
803 | *************************************************************************/
|
---|
804 | public static void odesolverresults(odesolverstate state,
|
---|
805 | ref int m,
|
---|
806 | ref double[] xtbl,
|
---|
807 | ref double[,] ytbl,
|
---|
808 | odesolverreport rep)
|
---|
809 | {
|
---|
810 | double v = 0;
|
---|
811 | int i = 0;
|
---|
812 | int i_ = 0;
|
---|
813 |
|
---|
814 | m = 0;
|
---|
815 | xtbl = new double[0];
|
---|
816 | ytbl = new double[0,0];
|
---|
817 |
|
---|
818 | rep.terminationtype = state.repterminationtype;
|
---|
819 | if( rep.terminationtype>0 )
|
---|
820 | {
|
---|
821 | m = state.m;
|
---|
822 | rep.nfev = state.repnfev;
|
---|
823 | xtbl = new double[state.m];
|
---|
824 | v = state.xscale;
|
---|
825 | for(i_=0; i_<=state.m-1;i_++)
|
---|
826 | {
|
---|
827 | xtbl[i_] = v*state.xg[i_];
|
---|
828 | }
|
---|
829 | ytbl = new double[state.m, state.n];
|
---|
830 | for(i=0; i<=state.m-1; i++)
|
---|
831 | {
|
---|
832 | for(i_=0; i_<=state.n-1;i_++)
|
---|
833 | {
|
---|
834 | ytbl[i,i_] = state.ytbl[i,i_];
|
---|
835 | }
|
---|
836 | }
|
---|
837 | }
|
---|
838 | else
|
---|
839 | {
|
---|
840 | rep.nfev = 0;
|
---|
841 | }
|
---|
842 | }
|
---|
843 |
|
---|
844 |
|
---|
845 | /*************************************************************************
|
---|
846 | Internal initialization subroutine
|
---|
847 | *************************************************************************/
|
---|
848 | private static void odesolverinit(int solvertype,
|
---|
849 | double[] y,
|
---|
850 | int n,
|
---|
851 | double[] x,
|
---|
852 | int m,
|
---|
853 | double eps,
|
---|
854 | double h,
|
---|
855 | odesolverstate state)
|
---|
856 | {
|
---|
857 | int i = 0;
|
---|
858 | double v = 0;
|
---|
859 | int i_ = 0;
|
---|
860 |
|
---|
861 |
|
---|
862 | //
|
---|
863 | // Prepare RComm
|
---|
864 | //
|
---|
865 | state.rstate.ia = new int[5+1];
|
---|
866 | state.rstate.ba = new bool[0+1];
|
---|
867 | state.rstate.ra = new double[5+1];
|
---|
868 | state.rstate.stage = -1;
|
---|
869 | state.needdy = false;
|
---|
870 |
|
---|
871 | //
|
---|
872 | // check parameters.
|
---|
873 | //
|
---|
874 | if( (n<=0 | m<1) | (double)(eps)==(double)(0) )
|
---|
875 | {
|
---|
876 | state.repterminationtype = -1;
|
---|
877 | return;
|
---|
878 | }
|
---|
879 | if( (double)(h)<(double)(0) )
|
---|
880 | {
|
---|
881 | h = -h;
|
---|
882 | }
|
---|
883 |
|
---|
884 | //
|
---|
885 | // quick exit if necessary.
|
---|
886 | // after this block we assume that M>1
|
---|
887 | //
|
---|
888 | if( m==1 )
|
---|
889 | {
|
---|
890 | state.repnfev = 0;
|
---|
891 | state.repterminationtype = 1;
|
---|
892 | state.ytbl = new double[1, n];
|
---|
893 | for(i_=0; i_<=n-1;i_++)
|
---|
894 | {
|
---|
895 | state.ytbl[0,i_] = y[i_];
|
---|
896 | }
|
---|
897 | state.xg = new double[m];
|
---|
898 | for(i_=0; i_<=m-1;i_++)
|
---|
899 | {
|
---|
900 | state.xg[i_] = x[i_];
|
---|
901 | }
|
---|
902 | return;
|
---|
903 | }
|
---|
904 |
|
---|
905 | //
|
---|
906 | // check again: correct order of X[]
|
---|
907 | //
|
---|
908 | if( (double)(x[1])==(double)(x[0]) )
|
---|
909 | {
|
---|
910 | state.repterminationtype = -2;
|
---|
911 | return;
|
---|
912 | }
|
---|
913 | for(i=1; i<=m-1; i++)
|
---|
914 | {
|
---|
915 | if( ((double)(x[1])>(double)(x[0]) & (double)(x[i])<=(double)(x[i-1])) | ((double)(x[1])<(double)(x[0]) & (double)(x[i])>=(double)(x[i-1])) )
|
---|
916 | {
|
---|
917 | state.repterminationtype = -2;
|
---|
918 | return;
|
---|
919 | }
|
---|
920 | }
|
---|
921 |
|
---|
922 | //
|
---|
923 | // auto-select H if necessary
|
---|
924 | //
|
---|
925 | if( (double)(h)==(double)(0) )
|
---|
926 | {
|
---|
927 | v = Math.Abs(x[1]-x[0]);
|
---|
928 | for(i=2; i<=m-1; i++)
|
---|
929 | {
|
---|
930 | v = Math.Min(v, Math.Abs(x[i]-x[i-1]));
|
---|
931 | }
|
---|
932 | h = 0.001*v;
|
---|
933 | }
|
---|
934 |
|
---|
935 | //
|
---|
936 | // store parameters
|
---|
937 | //
|
---|
938 | state.n = n;
|
---|
939 | state.m = m;
|
---|
940 | state.h = h;
|
---|
941 | state.eps = Math.Abs(eps);
|
---|
942 | state.fraceps = (double)(eps)<(double)(0);
|
---|
943 | state.xg = new double[m];
|
---|
944 | for(i_=0; i_<=m-1;i_++)
|
---|
945 | {
|
---|
946 | state.xg[i_] = x[i_];
|
---|
947 | }
|
---|
948 | if( (double)(x[1])>(double)(x[0]) )
|
---|
949 | {
|
---|
950 | state.xscale = 1;
|
---|
951 | }
|
---|
952 | else
|
---|
953 | {
|
---|
954 | state.xscale = -1;
|
---|
955 | for(i_=0; i_<=m-1;i_++)
|
---|
956 | {
|
---|
957 | state.xg[i_] = -1*state.xg[i_];
|
---|
958 | }
|
---|
959 | }
|
---|
960 | state.yc = new double[n];
|
---|
961 | for(i_=0; i_<=n-1;i_++)
|
---|
962 | {
|
---|
963 | state.yc[i_] = y[i_];
|
---|
964 | }
|
---|
965 | state.solvertype = solvertype;
|
---|
966 | state.repterminationtype = 0;
|
---|
967 | }
|
---|
968 |
|
---|
969 |
|
---|
970 | }
|
---|
971 | }
|
---|
972 |
|
---|