[4977] | 1 | /*************************************************************************
|
---|
| 2 | AP library
|
---|
| 3 | Copyright (c) 2003-2009 Sergey Bochkanov (ALGLIB project).
|
---|
| 4 |
|
---|
| 5 | >>> LICENSE >>>
|
---|
| 6 | This program is free software; you can redistribute it and/or modify
|
---|
| 7 | it under the terms of the GNU General Public License as published by
|
---|
| 8 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 9 | License, or (at your option) any later version.
|
---|
| 10 |
|
---|
| 11 | This program is distributed in the hope that it will be useful,
|
---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 14 | GNU General Public License for more details.
|
---|
| 15 |
|
---|
| 16 | A copy of the GNU General Public License is available at
|
---|
| 17 | http://www.fsf.org/licensing/licenses
|
---|
| 18 |
|
---|
| 19 | >>> END OF LICENSE >>>
|
---|
| 20 | *************************************************************************/
|
---|
| 21 | using System;
|
---|
| 22 | public partial class alglib
|
---|
| 23 | {
|
---|
| 24 | /********************************************************************
|
---|
| 25 | Callback definitions for optimizers/fitters/solvers.
|
---|
| 26 |
|
---|
| 27 | Callbacks for unparameterized (general) functions:
|
---|
| 28 | * ndimensional_func calculates f(arg), stores result to func
|
---|
| 29 | * ndimensional_grad calculates func = f(arg),
|
---|
| 30 | grad[i] = df(arg)/d(arg[i])
|
---|
| 31 | * ndimensional_hess calculates func = f(arg),
|
---|
| 32 | grad[i] = df(arg)/d(arg[i]),
|
---|
| 33 | hess[i,j] = d2f(arg)/(d(arg[i])*d(arg[j]))
|
---|
| 34 |
|
---|
| 35 | Callbacks for systems of functions:
|
---|
| 36 | * ndimensional_fvec calculates vector function f(arg),
|
---|
| 37 | stores result to fi
|
---|
| 38 | * ndimensional_jac calculates f[i] = fi(arg)
|
---|
| 39 | jac[i,j] = df[i](arg)/d(arg[j])
|
---|
| 40 |
|
---|
| 41 | Callbacks for parameterized functions, i.e. for functions which
|
---|
| 42 | depend on two vectors: P and Q. Gradient and Hessian are calculated
|
---|
| 43 | with respect to P only.
|
---|
| 44 | * ndimensional_pfunc calculates f(p,q),
|
---|
| 45 | stores result to func
|
---|
| 46 | * ndimensional_pgrad calculates func = f(p,q),
|
---|
| 47 | grad[i] = df(p,q)/d(p[i])
|
---|
| 48 | * ndimensional_phess calculates func = f(p,q),
|
---|
| 49 | grad[i] = df(p,q)/d(p[i]),
|
---|
| 50 | hess[i,j] = d2f(p,q)/(d(p[i])*d(p[j]))
|
---|
| 51 |
|
---|
| 52 | Callbacks for progress reports:
|
---|
| 53 | * ndimensional_rep reports current position of optimization algo
|
---|
| 54 |
|
---|
| 55 | Callbacks for ODE solvers:
|
---|
| 56 | * ndimensional_ode_rp calculates dy/dx for given y[] and x
|
---|
| 57 |
|
---|
| 58 | Callbacks for integrators:
|
---|
| 59 | * integrator1_func calculates f(x) for given x
|
---|
| 60 | (additional parameters xminusa and bminusx
|
---|
| 61 | contain x-a and b-x)
|
---|
| 62 | ********************************************************************/
|
---|
| 63 | public delegate void ndimensional_func (double[] arg, ref double func, object obj);
|
---|
| 64 | public delegate void ndimensional_grad (double[] arg, ref double func, double[] grad, object obj);
|
---|
| 65 | public delegate void ndimensional_hess (double[] arg, ref double func, double[] grad, double[,] hess, object obj);
|
---|
| 66 |
|
---|
| 67 | public delegate void ndimensional_fvec (double[] arg, double[] fi, object obj);
|
---|
| 68 | public delegate void ndimensional_jac (double[] arg, double[] fi, double[,] jac, object obj);
|
---|
| 69 |
|
---|
| 70 | public delegate void ndimensional_pfunc(double[] p, double[] q, ref double func, object obj);
|
---|
| 71 | public delegate void ndimensional_pgrad(double[] p, double[] q, ref double func, double[] grad, object obj);
|
---|
| 72 | public delegate void ndimensional_phess(double[] p, double[] q, ref double func, double[] grad, double[,] hess, object obj);
|
---|
| 73 |
|
---|
| 74 | public delegate void ndimensional_rep(double[] arg, double func, object obj);
|
---|
| 75 |
|
---|
| 76 | public delegate void ndimensional_ode_rp (double[] y, double x, double[] dy, object obj);
|
---|
| 77 |
|
---|
| 78 | public delegate void integrator1_func (double x, double xminusa, double bminusx, ref double f, object obj);
|
---|
| 79 |
|
---|
| 80 | /********************************************************************
|
---|
| 81 | Class defining a complex number with double precision.
|
---|
| 82 | ********************************************************************/
|
---|
| 83 | public struct complex
|
---|
| 84 | {
|
---|
| 85 | public double x;
|
---|
| 86 | public double y;
|
---|
| 87 |
|
---|
| 88 | public complex(double _x)
|
---|
| 89 | {
|
---|
| 90 | x = _x;
|
---|
| 91 | y = 0;
|
---|
| 92 | }
|
---|
| 93 | public complex(double _x, double _y)
|
---|
| 94 | {
|
---|
| 95 | x = _x;
|
---|
| 96 | y = _y;
|
---|
| 97 | }
|
---|
| 98 | public static implicit operator complex(double _x)
|
---|
| 99 | {
|
---|
| 100 | return new complex(_x);
|
---|
| 101 | }
|
---|
| 102 | public static bool operator==(complex lhs, complex rhs)
|
---|
| 103 | {
|
---|
| 104 | return ((double)lhs.x==(double)rhs.x) & ((double)lhs.y==(double)rhs.y);
|
---|
| 105 | }
|
---|
| 106 | public static bool operator!=(complex lhs, complex rhs)
|
---|
| 107 | {
|
---|
| 108 | return ((double)lhs.x!=(double)rhs.x) | ((double)lhs.y!=(double)rhs.y);
|
---|
| 109 | }
|
---|
| 110 | public static complex operator+(complex lhs)
|
---|
| 111 | {
|
---|
| 112 | return lhs;
|
---|
| 113 | }
|
---|
| 114 | public static complex operator-(complex lhs)
|
---|
| 115 | {
|
---|
| 116 | return new complex(-lhs.x,-lhs.y);
|
---|
| 117 | }
|
---|
| 118 | public static complex operator+(complex lhs, complex rhs)
|
---|
| 119 | {
|
---|
| 120 | return new complex(lhs.x+rhs.x,lhs.y+rhs.y);
|
---|
| 121 | }
|
---|
| 122 | public static complex operator-(complex lhs, complex rhs)
|
---|
| 123 | {
|
---|
| 124 | return new complex(lhs.x-rhs.x,lhs.y-rhs.y);
|
---|
| 125 | }
|
---|
| 126 | public static complex operator*(complex lhs, complex rhs)
|
---|
| 127 | {
|
---|
| 128 | return new complex(lhs.x*rhs.x-lhs.y*rhs.y, lhs.x*rhs.y+lhs.y*rhs.x);
|
---|
| 129 | }
|
---|
| 130 | public static complex operator/(complex lhs, complex rhs)
|
---|
| 131 | {
|
---|
| 132 | complex result;
|
---|
| 133 | double e;
|
---|
| 134 | double f;
|
---|
| 135 | if( System.Math.Abs(rhs.y)<System.Math.Abs(rhs.x) )
|
---|
| 136 | {
|
---|
| 137 | e = rhs.y/rhs.x;
|
---|
| 138 | f = rhs.x+rhs.y*e;
|
---|
| 139 | result.x = (lhs.x+lhs.y*e)/f;
|
---|
| 140 | result.y = (lhs.y-lhs.x*e)/f;
|
---|
| 141 | }
|
---|
| 142 | else
|
---|
| 143 | {
|
---|
| 144 | e = rhs.x/rhs.y;
|
---|
| 145 | f = rhs.y+rhs.x*e;
|
---|
| 146 | result.x = (lhs.y+lhs.x*e)/f;
|
---|
| 147 | result.y = (-lhs.x+lhs.y*e)/f;
|
---|
| 148 | }
|
---|
| 149 | return result;
|
---|
| 150 | }
|
---|
| 151 | public override int GetHashCode()
|
---|
| 152 | {
|
---|
| 153 | return x.GetHashCode() ^ y.GetHashCode();
|
---|
| 154 | }
|
---|
| 155 | public override bool Equals(object obj)
|
---|
| 156 | {
|
---|
| 157 | if( obj is byte)
|
---|
| 158 | return Equals(new complex((byte)obj));
|
---|
| 159 | if( obj is sbyte)
|
---|
| 160 | return Equals(new complex((sbyte)obj));
|
---|
| 161 | if( obj is short)
|
---|
| 162 | return Equals(new complex((short)obj));
|
---|
| 163 | if( obj is ushort)
|
---|
| 164 | return Equals(new complex((ushort)obj));
|
---|
| 165 | if( obj is int)
|
---|
| 166 | return Equals(new complex((int)obj));
|
---|
| 167 | if( obj is uint)
|
---|
| 168 | return Equals(new complex((uint)obj));
|
---|
| 169 | if( obj is long)
|
---|
| 170 | return Equals(new complex((long)obj));
|
---|
| 171 | if( obj is ulong)
|
---|
| 172 | return Equals(new complex((ulong)obj));
|
---|
| 173 | if( obj is float)
|
---|
| 174 | return Equals(new complex((float)obj));
|
---|
| 175 | if( obj is double)
|
---|
| 176 | return Equals(new complex((double)obj));
|
---|
| 177 | if( obj is decimal)
|
---|
| 178 | return Equals(new complex((double)(decimal)obj));
|
---|
| 179 | return base.Equals(obj);
|
---|
| 180 | }
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | /********************************************************************
|
---|
| 184 | Class defining an ALGLIB exception
|
---|
| 185 | ********************************************************************/
|
---|
| 186 | public class alglibexception : System.Exception
|
---|
| 187 | {
|
---|
| 188 | public string msg;
|
---|
| 189 | public alglibexception(string s)
|
---|
| 190 | {
|
---|
| 191 | msg = s;
|
---|
| 192 | }
|
---|
| 193 |
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | /********************************************************************
|
---|
| 197 | reverse communication structure
|
---|
| 198 | ********************************************************************/
|
---|
| 199 | public class rcommstate
|
---|
| 200 | {
|
---|
| 201 | public rcommstate()
|
---|
| 202 | {
|
---|
| 203 | stage = -1;
|
---|
| 204 | ia = new int[0];
|
---|
| 205 | ba = new bool[0];
|
---|
| 206 | ra = new double[0];
|
---|
| 207 | ca = new alglib.complex[0];
|
---|
| 208 | }
|
---|
| 209 | public int stage;
|
---|
| 210 | public int[] ia;
|
---|
| 211 | public bool[] ba;
|
---|
| 212 | public double[] ra;
|
---|
| 213 | public alglib.complex[] ca;
|
---|
| 214 | };
|
---|
| 215 |
|
---|
| 216 | /********************************************************************
|
---|
| 217 | internal functions
|
---|
| 218 | ********************************************************************/
|
---|
| 219 | public class ap
|
---|
| 220 | {
|
---|
| 221 | public static int len<T>(T[] a)
|
---|
| 222 | { return a.Length; }
|
---|
| 223 | public static int rows<T>(T[,] a)
|
---|
| 224 | { return a.GetLength(0); }
|
---|
| 225 | public static int cols<T>(T[,] a)
|
---|
| 226 | { return a.GetLength(1); }
|
---|
| 227 | public static void swap<T>(ref T a, ref T b)
|
---|
| 228 | {
|
---|
| 229 | T t = a;
|
---|
| 230 | a = b;
|
---|
| 231 | b = t;
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 | public static void assert(bool cond, string s)
|
---|
| 235 | {
|
---|
| 236 | if( !cond )
|
---|
| 237 | throw new alglibexception(s);
|
---|
| 238 | }
|
---|
| 239 |
|
---|
| 240 | public static void assert(bool cond)
|
---|
| 241 | {
|
---|
| 242 | assert(cond, "ALGLIB: assertion failed");
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | /****************************************************************
|
---|
| 246 | returns dps (digits-of-precision) value corresponding to threshold.
|
---|
| 247 | dps(0.9) = dps(0.5) = dps(0.1) = 0
|
---|
| 248 | dps(0.09) = dps(0.05) = dps(0.01) = 1
|
---|
| 249 | and so on
|
---|
| 250 | ****************************************************************/
|
---|
| 251 | public static int threshold2dps(double threshold)
|
---|
| 252 | {
|
---|
| 253 | int result = 0;
|
---|
| 254 | double t;
|
---|
| 255 | for (result = 0, t = 1; t / 10 > threshold*(1+1E-10); result++, t /= 10) ;
|
---|
| 256 | return result;
|
---|
| 257 | }
|
---|
| 258 |
|
---|
| 259 | /****************************************************************
|
---|
| 260 | prints formatted array
|
---|
| 261 | ****************************************************************/
|
---|
| 262 | public static string format(bool[] a)
|
---|
| 263 | {
|
---|
| 264 | string[] result = new string[len(a)];
|
---|
| 265 | int i;
|
---|
| 266 | for(i=0; i<len(a); i++)
|
---|
| 267 | if( a[i] )
|
---|
| 268 | result[i] = "true";
|
---|
| 269 | else
|
---|
| 270 | result[i] = "false";
|
---|
| 271 | return "{"+String.Join(",",result)+"}";
|
---|
| 272 | }
|
---|
| 273 |
|
---|
| 274 | /****************************************************************
|
---|
| 275 | prints formatted array
|
---|
| 276 | ****************************************************************/
|
---|
| 277 | public static string format(int[] a)
|
---|
| 278 | {
|
---|
| 279 | string[] result = new string[len(a)];
|
---|
| 280 | int i;
|
---|
| 281 | for (i = 0; i < len(a); i++)
|
---|
| 282 | result[i] = a[i].ToString();
|
---|
| 283 | return "{" + String.Join(",", result) + "}";
|
---|
| 284 | }
|
---|
| 285 |
|
---|
| 286 | /****************************************************************
|
---|
| 287 | prints formatted array
|
---|
| 288 | ****************************************************************/
|
---|
| 289 | public static string format(double[] a, int dps)
|
---|
| 290 | {
|
---|
| 291 | string fmt = String.Format("{{0:F{0}}}", dps);
|
---|
| 292 | string[] result = new string[len(a)];
|
---|
| 293 | int i;
|
---|
| 294 | for (i = 0; i < len(a); i++)
|
---|
| 295 | {
|
---|
| 296 | result[i] = String.Format(fmt, a[i]);
|
---|
| 297 | result[i] = result[i].Replace(',', '.');
|
---|
| 298 | }
|
---|
| 299 | return "{" + String.Join(",", result) + "}";
|
---|
| 300 | }
|
---|
| 301 |
|
---|
| 302 | /****************************************************************
|
---|
| 303 | prints formatted array
|
---|
| 304 | ****************************************************************/
|
---|
| 305 | public static string format(complex[] a, int dps)
|
---|
| 306 | {
|
---|
| 307 | string fmtx = String.Format("{{0:F{0}}}", dps);
|
---|
| 308 | string fmty = String.Format("{{0:F{0}}}", dps);
|
---|
| 309 | string[] result = new string[len(a)];
|
---|
| 310 | int i;
|
---|
| 311 | for (i = 0; i < len(a); i++)
|
---|
| 312 | {
|
---|
| 313 | result[i] = String.Format(fmtx, a[i].x) + (a[i].y >= 0 ? "+" : "-") + String.Format(fmty, Math.Abs(a[i].y)) + "i";
|
---|
| 314 | result[i] = result[i].Replace(',', '.');
|
---|
| 315 | }
|
---|
| 316 | return "{" + String.Join(",", result) + "}";
|
---|
| 317 | }
|
---|
| 318 |
|
---|
| 319 | /****************************************************************
|
---|
| 320 | prints formatted matrix
|
---|
| 321 | ****************************************************************/
|
---|
| 322 | public static string format(bool[,] a)
|
---|
| 323 | {
|
---|
| 324 | int i, j, m, n;
|
---|
| 325 | n = cols(a);
|
---|
| 326 | m = rows(a);
|
---|
| 327 | bool[] line = new bool[n];
|
---|
| 328 | string[] result = new string[m];
|
---|
| 329 | for (i = 0; i < m; i++)
|
---|
| 330 | {
|
---|
| 331 | for (j = 0; j < n; j++)
|
---|
| 332 | line[j] = a[i, j];
|
---|
| 333 | result[i] = format(line);
|
---|
| 334 | }
|
---|
| 335 | return "{" + String.Join(",", result) + "}";
|
---|
| 336 | }
|
---|
| 337 |
|
---|
| 338 | /****************************************************************
|
---|
| 339 | prints formatted matrix
|
---|
| 340 | ****************************************************************/
|
---|
| 341 | public static string format(int[,] a)
|
---|
| 342 | {
|
---|
| 343 | int i, j, m, n;
|
---|
| 344 | n = cols(a);
|
---|
| 345 | m = rows(a);
|
---|
| 346 | int[] line = new int[n];
|
---|
| 347 | string[] result = new string[m];
|
---|
| 348 | for (i = 0; i < m; i++)
|
---|
| 349 | {
|
---|
| 350 | for (j = 0; j < n; j++)
|
---|
| 351 | line[j] = a[i, j];
|
---|
| 352 | result[i] = format(line);
|
---|
| 353 | }
|
---|
| 354 | return "{" + String.Join(",", result) + "}";
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 | /****************************************************************
|
---|
| 358 | prints formatted matrix
|
---|
| 359 | ****************************************************************/
|
---|
| 360 | public static string format(double[,] a, int dps)
|
---|
| 361 | {
|
---|
| 362 | int i, j, m, n;
|
---|
| 363 | n = cols(a);
|
---|
| 364 | m = rows(a);
|
---|
| 365 | double[] line = new double[n];
|
---|
| 366 | string[] result = new string[m];
|
---|
| 367 | for (i = 0; i < m; i++)
|
---|
| 368 | {
|
---|
| 369 | for (j = 0; j < n; j++)
|
---|
| 370 | line[j] = a[i, j];
|
---|
| 371 | result[i] = format(line, dps);
|
---|
| 372 | }
|
---|
| 373 | return "{" + String.Join(",", result) + "}";
|
---|
| 374 | }
|
---|
| 375 |
|
---|
| 376 | /****************************************************************
|
---|
| 377 | prints formatted matrix
|
---|
| 378 | ****************************************************************/
|
---|
| 379 | public static string format(complex[,] a, int dps)
|
---|
| 380 | {
|
---|
| 381 | int i, j, m, n;
|
---|
| 382 | n = cols(a);
|
---|
| 383 | m = rows(a);
|
---|
| 384 | complex[] line = new complex[n];
|
---|
| 385 | string[] result = new string[m];
|
---|
| 386 | for (i = 0; i < m; i++)
|
---|
| 387 | {
|
---|
| 388 | for (j = 0; j < n; j++)
|
---|
| 389 | line[j] = a[i, j];
|
---|
| 390 | result[i] = format(line, dps);
|
---|
| 391 | }
|
---|
| 392 | return "{" + String.Join(",", result) + "}";
|
---|
| 393 | }
|
---|
| 394 |
|
---|
| 395 | /****************************************************************
|
---|
| 396 | checks that matrix is symmetric.
|
---|
| 397 | max|A-A^T| is calculated; if it is within 1.0E-14 of max|A|,
|
---|
| 398 | matrix is considered symmetric
|
---|
| 399 | ****************************************************************/
|
---|
| 400 | public static bool issymmetric(double[,] a)
|
---|
| 401 | {
|
---|
| 402 | int i, j, n;
|
---|
| 403 | double err, mx, v1, v2;
|
---|
| 404 | if( rows(a)!=cols(a) )
|
---|
| 405 | return false;
|
---|
| 406 | n = rows(a);
|
---|
| 407 | if( n==0 )
|
---|
| 408 | return true;
|
---|
| 409 | mx = 0;
|
---|
| 410 | err = 0;
|
---|
| 411 | for( i=0; i<n; i++)
|
---|
| 412 | {
|
---|
| 413 | for(j=i+1; j<n; j++)
|
---|
| 414 | {
|
---|
| 415 | v1 = a[i,j];
|
---|
| 416 | v2 = a[j,i];
|
---|
| 417 | if( !math.isfinite(v1) )
|
---|
| 418 | return false;
|
---|
| 419 | if( !math.isfinite(v2) )
|
---|
| 420 | return false;
|
---|
| 421 | err = Math.Max(err, Math.Abs(v1-v2));
|
---|
| 422 | mx = Math.Max(mx, Math.Abs(v1));
|
---|
| 423 | mx = Math.Max(mx, Math.Abs(v2));
|
---|
| 424 | }
|
---|
| 425 | v1 = a[i,i];
|
---|
| 426 | if( !math.isfinite(v1) )
|
---|
| 427 | return false;
|
---|
| 428 | mx = Math.Max(mx, Math.Abs(v1));
|
---|
| 429 | }
|
---|
| 430 | if( mx==0 )
|
---|
| 431 | return true;
|
---|
| 432 | return err/mx<=1.0E-14;
|
---|
| 433 | }
|
---|
| 434 |
|
---|
| 435 | /****************************************************************
|
---|
| 436 | checks that matrix is Hermitian.
|
---|
| 437 | max|A-A^H| is calculated; if it is within 1.0E-14 of max|A|,
|
---|
| 438 | matrix is considered Hermitian
|
---|
| 439 | ****************************************************************/
|
---|
| 440 | public static bool ishermitian(complex[,] a)
|
---|
| 441 | {
|
---|
| 442 | int i, j, n;
|
---|
| 443 | double err, mx;
|
---|
| 444 | complex v1, v2, vt;
|
---|
| 445 | if( rows(a)!=cols(a) )
|
---|
| 446 | return false;
|
---|
| 447 | n = rows(a);
|
---|
| 448 | if( n==0 )
|
---|
| 449 | return true;
|
---|
| 450 | mx = 0;
|
---|
| 451 | err = 0;
|
---|
| 452 | for( i=0; i<n; i++)
|
---|
| 453 | {
|
---|
| 454 | for(j=i+1; j<n; j++)
|
---|
| 455 | {
|
---|
| 456 | v1 = a[i,j];
|
---|
| 457 | v2 = a[j,i];
|
---|
| 458 | if( !math.isfinite(v1.x) )
|
---|
| 459 | return false;
|
---|
| 460 | if( !math.isfinite(v1.y) )
|
---|
| 461 | return false;
|
---|
| 462 | if( !math.isfinite(v2.x) )
|
---|
| 463 | return false;
|
---|
| 464 | if( !math.isfinite(v2.y) )
|
---|
| 465 | return false;
|
---|
| 466 | vt.x = v1.x-v2.x;
|
---|
| 467 | vt.y = v1.y+v2.y;
|
---|
| 468 | err = Math.Max(err, math.abscomplex(vt));
|
---|
| 469 | mx = Math.Max(mx, math.abscomplex(v1));
|
---|
| 470 | mx = Math.Max(mx, math.abscomplex(v2));
|
---|
| 471 | }
|
---|
| 472 | v1 = a[i,i];
|
---|
| 473 | if( !math.isfinite(v1.x) )
|
---|
| 474 | return false;
|
---|
| 475 | if( !math.isfinite(v1.y) )
|
---|
| 476 | return false;
|
---|
| 477 | err = Math.Max(err, Math.Abs(v1.y));
|
---|
| 478 | mx = Math.Max(mx, math.abscomplex(v1));
|
---|
| 479 | }
|
---|
| 480 | if( mx==0 )
|
---|
| 481 | return true;
|
---|
| 482 | return err/mx<=1.0E-14;
|
---|
| 483 | }
|
---|
| 484 |
|
---|
| 485 |
|
---|
| 486 | /****************************************************************
|
---|
| 487 | Forces symmetricity by copying upper half of A to the lower one
|
---|
| 488 | ****************************************************************/
|
---|
| 489 | public static bool forcesymmetric(double[,] a)
|
---|
| 490 | {
|
---|
| 491 | int i, j, n;
|
---|
| 492 | if( rows(a)!=cols(a) )
|
---|
| 493 | return false;
|
---|
| 494 | n = rows(a);
|
---|
| 495 | if( n==0 )
|
---|
| 496 | return true;
|
---|
| 497 | for( i=0; i<n; i++)
|
---|
| 498 | for(j=i+1; j<n; j++)
|
---|
| 499 | a[i,j] = a[j,i];
|
---|
| 500 | return true;
|
---|
| 501 | }
|
---|
| 502 |
|
---|
| 503 | /****************************************************************
|
---|
| 504 | Forces Hermiticity by copying upper half of A to the lower one
|
---|
| 505 | ****************************************************************/
|
---|
| 506 | public static bool forcehermitian(complex[,] a)
|
---|
| 507 | {
|
---|
| 508 | int i, j, n;
|
---|
| 509 | complex v;
|
---|
| 510 | if( rows(a)!=cols(a) )
|
---|
| 511 | return false;
|
---|
| 512 | n = rows(a);
|
---|
| 513 | if( n==0 )
|
---|
| 514 | return true;
|
---|
| 515 | for( i=0; i<n; i++)
|
---|
| 516 | for(j=i+1; j<n; j++)
|
---|
| 517 | {
|
---|
| 518 | v = a[j,i];
|
---|
| 519 | a[i,j].x = v.x;
|
---|
| 520 | a[i,j].y = -v.y;
|
---|
| 521 | }
|
---|
| 522 | return true;
|
---|
| 523 | }
|
---|
| 524 | };
|
---|
| 525 |
|
---|
| 526 | /********************************************************************
|
---|
| 527 | math functions
|
---|
| 528 | ********************************************************************/
|
---|
| 529 | public class math
|
---|
| 530 | {
|
---|
| 531 | //public static System.Random RndObject = new System.Random(System.DateTime.Now.Millisecond);
|
---|
| 532 | public static System.Random rndobject = new System.Random(System.DateTime.Now.Millisecond + 1000*System.DateTime.Now.Second + 60*1000*System.DateTime.Now.Minute);
|
---|
| 533 |
|
---|
| 534 | public const double machineepsilon = 5E-16;
|
---|
| 535 | public const double maxrealnumber = 1E300;
|
---|
| 536 | public const double minrealnumber = 1E-300;
|
---|
| 537 |
|
---|
| 538 | public static bool isfinite(double d)
|
---|
| 539 | {
|
---|
| 540 | return !System.Double.IsNaN(d) && !System.Double.IsInfinity(d);
|
---|
| 541 | }
|
---|
| 542 |
|
---|
| 543 | public static double randomreal()
|
---|
| 544 | {
|
---|
| 545 | double r = 0;
|
---|
| 546 | lock(rndobject){ r = rndobject.NextDouble(); }
|
---|
| 547 | return r;
|
---|
| 548 | }
|
---|
| 549 | public static int randominteger(int N)
|
---|
| 550 | {
|
---|
| 551 | int r = 0;
|
---|
| 552 | lock(rndobject){ r = rndobject.Next(N); }
|
---|
| 553 | return r;
|
---|
| 554 | }
|
---|
| 555 | public static double sqr(double X)
|
---|
| 556 | {
|
---|
| 557 | return X*X;
|
---|
| 558 | }
|
---|
| 559 | public static double abscomplex(complex z)
|
---|
| 560 | {
|
---|
| 561 | double w;
|
---|
| 562 | double xabs;
|
---|
| 563 | double yabs;
|
---|
| 564 | double v;
|
---|
| 565 |
|
---|
| 566 | xabs = System.Math.Abs(z.x);
|
---|
| 567 | yabs = System.Math.Abs(z.y);
|
---|
| 568 | w = xabs>yabs ? xabs : yabs;
|
---|
| 569 | v = xabs<yabs ? xabs : yabs;
|
---|
| 570 | if( v==0 )
|
---|
| 571 | return w;
|
---|
| 572 | else
|
---|
| 573 | {
|
---|
| 574 | double t = v/w;
|
---|
| 575 | return w*System.Math.Sqrt(1+t*t);
|
---|
| 576 | }
|
---|
| 577 | }
|
---|
| 578 | public static complex conj(complex z)
|
---|
| 579 | {
|
---|
| 580 | return new complex(z.x, -z.y);
|
---|
| 581 | }
|
---|
| 582 | public static complex csqr(complex z)
|
---|
| 583 | {
|
---|
| 584 | return new complex(z.x*z.x-z.y*z.y, 2*z.x*z.y);
|
---|
| 585 | }
|
---|
| 586 |
|
---|
| 587 | }
|
---|
| 588 | }
|
---|